

1 **Deep Learning-Based Automated Echocardiographic Measurements in Pediatric and**
2 **Congenital Heart Disease**

3

4 **Running Title:** AI for Automated Pediatric Echo Measurements

5

6 Platon Lukyanenko*,^a Sunil Ghelani*,^b Yuting Yang,^a Bohan Jiang,^a Timothy Miller,^a Peter
7 Higgins,^b Manouk Kirakosian,^b Kaitlyn Tracy,^b Janet Kane,^b David Harrild,^b John Triedman,^b
8 Andrew J. Powell,^b Tal Geva,^b William G. La Cava**,^a Joshua Mayourian**,^b

9

10 ^a Computational Health Informatics Program, Boston Children's Hospital, Department of
11 Pediatrics, Harvard Medical School, Boston, MA, USA

12 ^b Department of Cardiology, Boston Children's Hospital, Department of Pediatrics, Harvard
13 Medical School, Boston, MA, USA

14

15 * Co-First Authors

16 ** Co-Senior Authors

17

18 **Word count:** 4,295 words

19

20 **Address for correspondence:**

21 Joshua Mayourian

22 Department of Cardiology, Boston Children's Hospital

23 300 Longwood Avenue

24 Boston, MA 02115

25 Phone: 617-355-6328

26 Email: joshua.mayourian@childrens.harvard.edu

27 **ABSTRACT**

28 **Background:** Echocardiography (echo) is a cornerstone of pediatric cardiology, yet access to
29 expert interpreters is limited worldwide, particularly in low-resource and rural settings. Artificial
30 intelligence (AI) offers a mechanism to broadly deliver expert-level precision and standardize
31 measurements, yet AI for comprehensive automated measurements in pediatric and congenital
32 heart disease (CHD) echo remains underdeveloped.

33 **Methods:** We created EchoFocus-Measure, an AI platform that automatically extracts 18
34 quantitative parameters and 10 qualitative assessments from full echo studies. The method
35 extends a multi-task, view-agnostic architecture (PanEcho) with a study-level transformer to
36 prioritize diagnostically informative views. Training (80%) and internal testing (20%) were
37 performed on echos from Boston Children's Hospital (BCH), with external evaluation on outside
38 referral studies. Left ventricular ejection fraction (LVEF) was the primary endpoint.

39 **Results:** The internal cohort included 11.4 million videos from 217,435 echos (60,269 patients;
40 median age 8.5 years; median LVEF 61%), and external validation encompassed 289,613 videos
41 from 3,096 echos (2,506 patients; median age 3.5 years; median LVEF 62%). For LVEF,
42 EchoFocus-Measure exhibited a median absolute error (MAE) of 2.8% internally and 3.8%
43 externally, maintaining accuracy across infants (MAE 3.2%) and complex CHD lesions (e.g.,
44 MAE 4.0% for L-loop transposition of the great arteries). EchoFocus-Measure improved upon
45 the PanEcho benchmark (MAE 7.5% for infants; 13.1% for L-loop transposition). Discrepant
46 case (>50th percentile error) adjudication of LVEF demonstrated that model errors (MAE 2.4%)
47 were within human variability (MAE 3.7%). For qualitative measures, EchoFocus-Measure
48 performed well internally (AUROC 0.88-0.95) and modestly externally (AUROC 0.73-0.86).
49 Explainability analyses highlighted model focus on clinically appropriate echo views for LVEF

50 estimation (apical four-chamber, parasternal short/long) and mitral regurgitation assessment
51 (apical four-chamber color Doppler, parasternal short/long color Doppler).

52 **Conclusions:** EchoFocus-Measure delivers rapid and reliable automated echo measurements
53 across ages and lesions within diverse internal and real-world external cohorts, serving as a step
54 toward scalable, global access to high-quality pediatric cardiovascular care.

55 **Keywords:** Artificial Intelligence; Pediatric Cardiology; Echocardiography; Congenital Heart
56 Disease

57

58 INTRODUCTION

59 Transthoracic echocardiography (echo) is a noninvasive, portable imaging modality that forms
60 the foundation of pediatric cardiology worldwide by enabling diagnosis and longitudinal
61 assessment of pediatric and congenital heart disease (CHD).¹ Accurate measurements of
62 ventricular function,² chamber dimensions,³ and valvar structure and performance^{4,5} are essential
63 for timely diagnosis, monitoring disease progression, and guiding clinical decision-making.
64 Reliable echo assessment requires specialized training that remains maldistributed globally. In
65 many rural regions and low- and middle-income countries (LMICs), limited access to expert
66 interpretation constrains the clinical utility of echo,⁶⁻¹⁰ contributing to delayed disease
67 recognition and widening disparities in pediatric cardiovascular outcomes.^{9,11} Even in high-
68 resource healthcare settings, substantial inter-operator and inter-institutional variability
69 underscores the need for standardized, reproducible echo measurements to ensure consistent
70 care.^{12,13}

71 Recent advances in artificial intelligence (AI) have begun to reshape echo, particularly in
72 adult populations where AI-based systems have progressed from automating individual
73 measurements to supporting comprehensive, study-level interpretation.¹⁴⁻¹⁹ However, this
74 progress lags in pediatric and CHD echo due to the unique challenges of anatomic variation and
75 evolving physiologic states from infancy to adulthood. Consequently, prior efforts have largely
76 focused on narrowly scoped tasks (e.g., recognizing standard imaging views, extracting
77 individual measurements, or identifying specific CHD lesions),^{12,13,20-23} leaving an unmet need
78 for broad, scalable, study-level measurement tools to support routine pediatric cardiac care.

79 To address this gap, we developed EchoFocus-Measure, a multi-task, study-level AI-echo
80 model designed to generate 18 quantitative and 10 qualitative measurements. We evaluated real-

81 world performance and generalizability using echos from 37 countries across five continents,
82 with the goal of enabling scalable automated measurements for global standardization and
83 expanding access to high-quality pediatric echo assessment worldwide.

84 **METHODS**

85 This study is reported in accordance with the TRIPOD+AI 2024 guidelines.²⁴

86 *Patient Population and Patient Assignment*

87 Echo data were retrospectively obtained at Boston Children's Hospital (BCH) from July 2015
88 through July 2025. All available transthoracic echos acquired during this period were screened
89 for inclusion. Studies failing predefined quality control standards (described in "Data Retrieval,
90 Pre-Processing, and Quality Control") were excluded, yielding the main study cohort.

91 Echos were grouped based on acquisition site into internal studies (performed at BCH or
92 affiliated outpatient centers) and external referral studies. The internal dataset was further
93 subdivided by randomly allocating patients 80:20 to model development and testing sets,
94 respectively. There was no patient overlap between development and test cohorts.

95 *Definition of Outcomes*

96 For both internal and external cohorts, the ground truth outcome label was derived from the final
97 clinical report generated by a BCH attending pediatric cardiologist with subspecialty training in
98 noninvasive pediatric cardiac imaging. This approach holds the interpretation standard constant,
99 allowing the external validation to primarily assess model robustness to image acquisition
100 heterogeneity arising from different scanners, ultrasound systems, and imaging protocols.

101 The outcomes of interest were 18 quantitative measures and 10 qualitative measures. The
102 18 quantitative measures included the following: aortic valve diameter, aortic root diameter, left
103 ventricular ejection fraction (LVEF), LV end-diastolic volume, LV posterior wall thickness,
104 septal wall thickness, LV mass, LV end-systolic volume, mitral valve diameter, main pulmonary
105 artery diameter, pulmonary valve diameter, tricuspid valve diameter, left atrial volume, right
106 atrial volume, right ventricular longitudinal strain, LV circumferential strain, LV longitudinal

107 strain, and RV free wall strain. All internal and external measurements were stored in a
108 structured database within a custom hospital software. All measurements were transformed into
109 unitless variables via z-score normalization or Box-Cox transformation. Model outcomes were
110 evaluated using raw measurement values. The primary outcome was LVEF, which institutionally
111 is measured via the bullet method (5/6 area-length method).²⁵

112 The 10 qualitative measures were defined as at least moderate severity of the following:
113 left ventricular outflow tract obstruction, aortic regurgitation, aortic stenosis, mitral regurgitation,
114 right ventricular hypertension, tricuspid regurgitation, LV systolic dysfunction, pulmonary
115 regurgitation, LV hypertrophy, and right ventricular outflow tract obstruction. To create these
116 labels, we leveraged our institutional Fyler coding system—a detailed, decades-established
117 anatomic classification system used at BCH and specifically designed for pediatric and CHD.²⁶
118 For every echo, expert interpreting cardiac imagers assign Fyler codes that capture qualitative
119 severity grading of ventricular and valvar function, in addition to structural cardiac lesions with
120 high anatomic granularity. Each of the qualitative labels were marked as negative if they were
121 qualified as less than moderate severity. Due to the natural history of CHD (e.g., tetralogy of
122 Fallot) and institutional practice of Fyler code use, right ventricular outflow tract obstruction was
123 grouped as a composite of pulmonary stenosis, right ventricle-to-pulmonary artery conduit
124 stenosis, or right ventricular outflow tract obstruction.

125 *Data Retrieval, Pre-Processing, and Quality Control*

126 Echo studies were obtained from the BCH picture archiving and communication system. Studies
127 with fewer than 10 DICOM files were excluded. The remaining studies were then processed
128 using a standardized pipeline adapted from PanEcho.¹⁴ For each study, raw two-dimensional
129 echo videos were extracted directly from DICOM files. All data underwent thorough

130 deidentification prior to analysis. Each frame was binarized to delineate the primary imaging
131 region, and pixels outside the largest detected contour were concealed. Videos were then cropped
132 to the central imaging area, resized to 256 x 256 using bicubic interpolation, and further
133 anonymized by masking peripheral regions that could contain identifying information.¹⁴

134 *EchoFocus-Measure Model Architecture*

135 EchoFocus-Measure is designed to convert a full set of echo video clips from a single study into
136 a comprehensive set of quantitative or qualitative measurements. The model integrates
137 information across all videos to emulate the approach of a skilled clinician, who synthesizes
138 multiple views to generate accurate cardiac assessments. The framework builds on a PanEcho
139 backbone,¹⁴ enhanced with an additional transformer layer to allow the model to focus²⁷ on the
140 most informative video clips and capture complex inter-video relationships (Figure 1B).

141 Each video is first converted into 16 random sets of 16 sequential frames (each called
142 clips); each frame (image) is processed by a 2D convolutional neural network (ConvNeXt-T,²⁸
143 pretrained on ImageNet) to extract rich feature representations. The resulting individual image
144 embeddings are sequentially organized and passed through a temporal transformer with four
145 layers and eight attention heads. Positional encodings preserve temporal order, and clip-level
146 outputs are aggregated via mean pooling to generate a single clip embedding as a 768-
147 dimensional vector.

148 EchoFocus-Measure then expands upon the original PanEcho architecture¹⁴ and
149 incorporates an additional transformer that operates across all clip embeddings (number of
150 videos x 16) to generate a single, study-level embedding. Unlike PanEcho, the transformer
151 encoder analyzes all video embeddings collectively, enabling the model to identify patterns that
152 emerge only when multiple views are considered together. The resulting study-level embedding

153 is then passed through fully connected layers to produce predictions for measurements of
154 interest.

155 Two separate models were trained: a regression model simultaneously predicting 18
156 quantitative echo measurements, and a binary classification model simultaneously predicting 10
157 qualitative measurements. For the regression model, echo studies were included if at least one
158 quantitative measurement was available; missing measurement targets were masked and
159 excluded from the loss computation.

160 *Model Training Strategy*

161 For model development, echos from the internal development cohort were randomly divided at
162 the patient level into training and validation subsets using an 80:20 split. The training subset was
163 used to optimize model parameters, while the validation subset was reserved for model selection
164 and early stopping. Pretrained PanEcho weights were frozen during training, enabling the
165 optimization process to focus on the newly introduced study-level transformer encoder and
166 downstream task-specific prediction layers.

167 Training was performed using the AdamW optimizer²⁹ with a weight decay coefficient of
168 0.01. A dynamic learning rate schedule was employed, reducing the learning rate in response to
169 plateaus in validation loss. Training stopped when no improvement in validation performance
170 was observed for 10 consecutive epochs.

171 To enhance robustness to real-world echo variability, several regularization strategies
172 were applied. Dropout³⁰ was incorporated during training at a rate of 0.2 for weights and 0.5 for
173 video clips to reduce overfitting and improve tolerance to incomplete or heterogeneous video
174 inputs. In addition, consistent with prior PanEcho-based approaches,¹⁴ data augmentation

175 techniques such as random cropping, rotation, and horizontal flipping were applied to mitigate
176 sensitivity to image acquisition variability and noise.

177 Hyperparameter optimization was conducted through systematic exploration of key
178 architectural and training parameters: the number of layers in the study-level transformer encoder
179 (1, 5, 10, and 20); learning rates ranging from 1e-4 to 1e-2; and effective batch sizes between 32
180 and 128. The final classification model configuration was selected to minimize aggregate
181 validation loss across all prediction tasks, while the final regression model was chosen to
182 minimize LVEF validation error.

183 *Model Performance Assessment and Statistical Analysis*

184 Regression model performance for continuous outcomes was evaluated using the median
185 absolute error (MAE). Results are not reported for measurements with fewer than 10 available
186 observations (e.g., strain from external echos) due to insufficient sample size. Where comparable
187 endpoints existed, performance was benchmarked against the PanEcho framework.

188 For binary prediction tasks, discriminatory performance was evaluated using the area
189 under the receiver operating characteristic curve (AUROC) and the area under the precision-
190 recall curve. Results with less than 10 positive cases were not reported. To facilitate clinical
191 interpretation, sensitivity, specificity, positive and negative likelihood ratios, positive and
192 negative predictive values, and lift were calculated.

193 Operating thresholds for binary outcomes were selected based on the maximum Youden
194 index, determined from the validation dataset and applied consistently across test cohorts. Unless
195 otherwise specified, larger metric values reflect superior model performance. Statistical
196 uncertainty was estimated via nonparametric bootstrapping with 1,000 resamples, and
197 corresponding confidence intervals were reported for all primary performance measures.

198 *Subgroup Analysis*

199 Subgroup analyses were performed on the test cohorts stratified by age groupings³¹ of age < 1
200 (infant), 1 ≤ age < 3, 3 ≤ age < 8, 8 ≤ age < 12, 12 ≤ age ≤ 18 years, and age > 18 years. Model
201 discrimination within each age subgroup was assessed using AUROC. In addition, performance
202 was assessed with subgroups of individual CHD lesions, as well as composites of critical and
203 non-critical CHD (for definitions, see Supplementary Materials). Labels for CHD were generated
204 using Fyler codes from the first BCH echo report per patient.

205 Performance was additionally evaluated in a cardiomyopathy subgroup, inclusive of
206 dilated, hypertrophic, restrictive, arrhythmogenic, non-compaction, metabolic/mitochondrial, and
207 unspecified cardiomyopathies. To account for the possibility that cardiomyopathy may not have
208 been detected on the initial echo, patients were considered to have cardiomyopathy if they had a
209 corresponding code on any echo in their record.

210 *Model Adjudication*

211 To compare model versus human error, adjudication was performed. Four blinded sonographers
212 remeasured 50 echo studies with discrepant LVEF measurements (MAE >50th percentile), and 50
213 echo studies with discrepant aortic root measurements (MAE >50th percentile). The latter was
214 selected to focus on a valve measurement that carries clinical significance in the aortopathy
215 population. Adjudicators were blinded to patient names, echo reports, model predictions, and to
216 each other's assessments.

217 Post-hoc analysis including calculating the human MAE (derived via leave-one-human-
218 out methodology) and the EchoFocus-Measure MAE (derived using the median of blinded
219 sonographer measurements as the ground truth). In addition, to assess agreement, the human-

220 human (i.e., all four blinded sonographers) and the human-AI (i.e., all four blinded sonographers
221 and AI) intraclass correlation coefficients were calculated.

222 *Model Interpretability*

223 To enhance interpretability of model outputs, we conducted post-hoc attribution analyses using
224 integrated gradients³² for predictions of LVEF and mitral regurgitation. For each task, we
225 selected 25 echo studies with the smallest absolute prediction error (i.e., lowest MAE for LVEF;
226 lowest error among studies positive for mitral regurgitation). Within each selected study,
227 attribution scores were calculated to characterize the influence of individual video clips on the
228 corresponding model prediction. Clips were ordered by attribution magnitude, and the ten most
229 influential videos per study were retained for subsequent qualitative assessment.

230 The selected clips were then reviewed independently by a pediatric cardiology fellow,
231 who identified and recorded the echo views represented among the model-prioritized inputs.

232 *Data Availability and Software*

233 To support transparency and reproducibility, the EchoFocus-Measure model and associated
234 source code are publicly accessible for non-commercial, academic research use at
235 <https://echofocus.org>. Access to echo data derived from BCH is governed by institutional
236 policies; requests will be evaluated to determine feasibility based on privacy, intellectual
237 property, and regulatory considerations. When permitted, deidentified data and related materials
238 will be shared under an institutional material transfer agreement for non-commercial, research
239 purposes only. This study was conducted with approval from the BCH Institutional Review
240 Board.

241 **RESULTS**

242 *Patient Population Characteristics*

243 There were 234,807 transthoracic echos at Boston Children's Hospital meeting inclusion
244 criteria. After excluding 11,239 echos with less than 10 DICOM files per study and 3,037 echos
245 from overlapping patients in the training and external cohorts, there were 220,531 studies
246 remaining, forming the main cohort (Figure 1A). Of those, 217,435 echos (64,403 patients) were
247 from the internal cohort, and 3,096 echos (2,506 patients) were from the external cohort. The
248 external international patients resided in 37 countries spanning five continents: North America,
249 South America, Europe, Asia, and Africa.

250 As shown in Table 1, there were several differences between the internal (n=60,269
251 patients for model development; n=15,068 for testing) and external (n=2,506) cohorts. In
252 general, the external cohort was more complex with higher rates critical CHD (21.7% versus 4.0-
253 4.2%), non-critical CHD (33.0% versus 16.9-17.2%), and any CHD (43.8% versus 18.2-18.5%).
254 Prevalence for each individual lesion is shown in Table 1. Cardiomyopathy was present in 1.8%,
255 1.5%, and 1.6% of patients in the internal development, internal test, and external test cohorts,
256 respectively.

257 As shown in Table 2, there were accompanying differences in echo characteristics
258 between the internal (n=174,042 echos for model development; n=43,393 echos for testing) and
259 external patients (n=3,096 echos). The internal model development and testing cohorts had 9.1
260 million and 2.3 million echo videos respectively, totaling >11 million. There were 47 [IQR, 36-
261 66] videos per study for the internal model development and test cohort. The external cohort had
262 289,613 videos, with 44 [IQR 29-62] videos per study. The external cohort was younger (median
263 age at echo 3.5 [IQR 0.6-11.1] years) compared to the internal development (median age at echo

264 8.5 [IQR 1.1-16.6] years) and test (median age at echo 8.5 [1.2-16.5] years) cohorts.

265 Accordingly, the external cohort had smaller raw LV end-diastolic volumes, LV masses, LV

266 end-systolic volumes, valvar measurements, and atrial volumes.

267 The higher rates of external CHD were accompanied by higher rates of qualitative

268 outcomes such as biventricular outflow tract obstruction, valvar regurgitation, aortic stenosis

269 (1.2% versus 0.7-1.0%), and LV hypertrophy (2.0% versus 1.4-1.5%). The internal cohort had

270 higher rates of LV systolic dysfunction and right ventricular hypertension (Table 2).

271 *EchoFocus-Measure Regression Performance*

272 Regression model performance of EchoFocus-Measure for 18 individual measurements during

273 internal and external testing is shown in Figure 2. Internally, MAE was: 0.09 cm (aortic valve

274 diameter), 0.13 cm (aortic root diameter), 2.8% (LVEF), 5.8 mL (LV end-diastolic volume), 0.05

275 cm (LV posterior wall thickness), 0.05 cm (septal wall thickness), 5.1 g (LV mass), 2.5 mL (2LV

276 end-systolic volume), 0.14 cm (mitral valve diameter), 0.17 cm (main pulmonary artery

277 diameter), 0.14 cm (pulmonary valve diameter), 0.18 cm (tricuspid valve diameter), 4.8 mL (left

278 atrial volume), 5.5 mL (right atrial volume), 2.6% (right ventricular longitudinal strain), 2.6%

279 (LV circumferential strain), 1.9% (LV longitudinal strain), and 3.2% (right ventricular free wall

280 strain). During external validation, there was variable increase in MAE among metrics; for

281 example, external LVEF MAE increased to 3.8%, LV end-diastolic volume MAE increased to

282 13.8 mL, and aortic root diameter MAE increased to 0.27 cm.

283 During benchmarking, EchoFocus-Measure outperformed PanEcho in predicting LVEF

284 in the overall internal (MAE 2.8% versus 7.3%) and external (MAE 3.8% versus 7.9%) cohorts

285 and in specific age and lesion subgroups (Table 3). EchoFocus-Measure performance remained

286 similar for ages >3, followed by a slight drop for ages 1-3 (internal MAE 3.0%, external MAE

287 3.8%) and age <1 (internal MAE 3.2%, external MAE 4.4%). PanEcho performance started to
288 drop for ages <8 years old.

289 EchoFocus-Measure LVEF performance was relatively stable across all CHD lesions
290 (internal MAE <5% except hypoplastic left heart syndrome). Similar trends were noted
291 externally, with a maximal MAE of 5.8%. Interestingly, for L-loop transposition of the great
292 arteries, MAE was 4.0% internally for EchoFocus-Measure, compared to 13.1% for PanEcho.

293 Among non-critical CHD studies, EchoFocus-Measure exhibited a LVEF MAE of 3.0%
294 internally and 4.3% externally. LVEF MAE increased slightly for critical CHD (3.3% internal,
295 5.5% external) and decreased for patients without CHD (2.6% internal, 3.3% external). In the
296 cardiomyopathy subgroup, LVEF MAE was 3.2% internally and 5.1% externally. PanEcho
297 showed similar trends but with higher errors; for example, LVEF MAE for critical CHD was
298 8.7% both internally and externally. As illustrated in Figure S1, EchoFocus-Measure
299 outperformed PanEcho for six additional measurements: LV end-diastolic volume, LV end-
300 systolic volume, septal wall thickness, LV posterior wall thickness, left atrial volume, and aortic
301 root diameter.

302 *Sonographer Adjudication*

303 Discrepant internal test cases (>50th percentile MAE) for LVEF and aortic root diameter were
304 reviewed by four experienced blinded sonographers.

305 As shown in Figure 3A, for LVEF EchoFocus-Measure clustered with the original
306 measurement and sonographers 1, 2, 4, whereas sonographer 3 did not. When compared to
307 median sonographer LVEF measurements, the adjudicated EchoFocus-Measure MAE of 2.4%
308 was within the sonographer MAE of 3.7%. The inter-sonographer intraclass correlation

309 coefficient was 0.47; when adding EchoFocus-Measure to the pool of sonographer
310 measurements, the intraclass correlation coefficient was unchanged (0.47).

311 As shown in Figure 3B, EchoFocus-Measure clustered alone when estimating aortic root
312 diameter. When compared to median sonographer aortic root diameter measurements, the
313 adjudicated EchoFocus-Measure MAE of 0.53 cm was outside the sonographer MAE of 0.05 cm.
314 The near perfect inter-sonographer intraclass correlation coefficient was 0.96; when adding
315 EchoFocus-Measure to the pool of measurements, the intraclass correlation coefficient dropped
316 to 0.91.

317 *EchoFocus-Measure Qualitative Outcome Performance*

318 EchoFocus-Measure performance to detect 10 qualitative outcomes is shown in Figure 3.
319 Internally, performance ranged from AUROC 0.88 (at least moderate RV hypertension, LV
320 hypertrophy, and RV outflow tract obstruction) to 0.95 (at least moderate aortic stenosis). During
321 external testing, there was a modest drop in performance, with AUROC ranging from 0.73
322 (pulmonary and tricuspid regurgitation) to 0.86 (aortic stenosis). Individual performance metrics
323 for internal and external testing are shown in Tables S1 and S2.

324 For two valvar measurements of interest (aortic and mitral regurgitation), subgroup
325 analysis was performed. As shown in Table S3, internal performance was highest for ages 3-18.
326 No clear trend was apparent for external studies.

327 *Model Explainability*

328 In model explainability analyses (Figure 5), EchoFocus-Measure assigned the highest attention
329 for LVEF assessment to the apical four-chamber, parasternal long-axis, and parasternal short-
330 axis views. For mitral regurgitation, the model similarly prioritized these same views, with Color
331 Doppler clips being preferentially selected in most cases.

332 DISCUSSION

333 EchoFocus-Measure is the first study-level, multi-task AI echo platform designed for automated
334 evaluation of a broad set of common pediatric echo measurements, encompassing 18 quantitative
335 and 10 qualitative parameters. The method extends the PanEcho framework with a clinically
336 inspired study-level attention module that prioritizes diagnostically informative views in a
337 manner analogous to expert cardiac imagers. By leveraging the largest pediatric and CHD echo
338 dataset reported to date (>11 million videos), we address longstanding limitations related to
339 sample size and age- and lesion-level heterogeneity that have constrained pediatric AI-echo
340 development. We demonstrate that EchoFocus-Measure achieves expert-level performance for
341 key functional measurements (including LVEF) across age, CHD lesion, and cardiomyopathy
342 subgroups. Qualitative measurements showed strong internal performance with a modest decline
343 on external testing. Notably, external performance herein was comparable to the internally
344 reported performance of prior pediatric AI-echo studies focused on individual measurements,
345 including mitral regurgitation (AUROC 0.75-0.84)²³ and LVEF (MAE 3.7%).¹² Finally, model
346 explainability analyses suggest EchoFocus-Measure prioritizes clinically expected views for
347 LVEF and mitral regurgitation prediction, lending trust to clinicians. Collectively, these findings
348 suggest that EchoFocus-Measure is a step towards broadly delivering quality pediatric echo
349 assessments across diverse clinical settings, with the potential to expand access to care,
350 accelerate patient triage, standardize measurements, and streamline sonographer workflows.

351 *Clinical Need for Automated Echo Measurements*

352 Pediatric heart failure is an underrecognized and growing global health challenge.³³⁻³⁵ In 2021,
353 an estimated 6 million children were affected worldwide, a number forecasted to sharply rise by
354 2050.³³⁻³⁵ These figures likely underestimate the true burden because pediatric heart failure is

355 systematically underdiagnosed in LMICs.³³ Furthermore, the leading causes of pediatric heart
356 failure³³—CHD (48%), cardiomyopathy (20%), and rheumatic heart disease (11%)—are also
357 major drivers of heart failure in adulthood; for example, the rapidly growing adult CHD
358 population is at nearly 10-fold greater risk of heart failure,³⁶ which represents the leading cause
359 of mortality in this population.³⁷ Rheumatic heart disease alone, which disproportionately affects
360 children and young adults in resource-limited settings, impacts an estimated 40 million
361 individuals globally and accounts for nearly 300,000 deaths annually.³⁸

362 Across these conditions, delayed recognition of ventricular dysfunction and valvular
363 disease leads to worse clinical trajectories for children and adults who might otherwise benefit
364 from early referral, timely intervention, and guideline-directed therapy. Scalable and accessible
365 technologies are urgently needed to facilitate earlier disease detection and enable clinically
366 actionable decision-making across diverse care environments. This need is particularly acute in
367 LMICs, where shortages of clinicians with specialized expertise in pediatric cardiology are
368 profound,^{9,10,39} and where the burden of diseases such as rheumatic heart disease remains high.
369 Even in well-resourced healthcare systems, substantial inter-operator and inter-institutional
370 variability in echo measurements persists, underscoring the ongoing challenge and need for
371 achieving standardized, reproducible quantitative assessment.^{12,13}

372 *Clinical Implications of EchoFocus-Measure*

373 With this context, EchoFocus-Measure was developed to benefit both low-resource and high-
374 resource settings. In resource-limited settings, EchoFocus-Measure may support triage by
375 identifying patients with ventricular dysfunction or clinically significant left-sided valvar
376 disease, including patterns suggestive of rheumatic heart disease or congenital valvulopathies.
377 LVEF error in external cohorts (MAE 3.8%) was comparable to human variability (MAE 3.7%),

378 supporting the use of automated LVEF assessment for identifying patients at risk of systolic
379 dysfunction. In addition, external left-sided valvar abnormality AUROCs of 0.80-0.86 and
380 external positive predictive values of approximately 25% for mitral regurgitation suggest that the
381 model can enrich for higher-risk patients who may benefit from earlier referral or further expert
382 evaluation (Table S2).

383 Even in well-resourced healthcare systems, automated echo measurements offer
384 important benefits. Substantial inter-operator and inter-institutional variability in measurements
385 can adversely affect consistency and quality of care.^{12,13} Moreover, routine quantitative
386 measurements consume significant clinician/sonographer time and could be reliably automated,
387 allowing expert effort to be redirected toward higher-value interpretive and clinical decision-
388 making tasks. EchoFocus-Measure achieves sonographer-level accuracy for LVEF measurement
389 and demonstrates stable performance across a broad range of ages and CHD lesion types,
390 supporting its use for automated measurements and quality assurance to streamline sonographer
391 workflow. In the adult echo literature, a comparable AI-based system has been shown to be non-
392 inferior to sonographers for LVEF assessment in a blinded, randomized trial, while also reducing
393 interpretation time for both sonographers and cardiologists.⁴⁰ EchoFocus-Measure could fill a
394 similar role in pediatric practice, although prospective evaluation will be required to rigorously
395 assess its impact on workflow and clinical decision-making.

396

397 *Importance of Real-World Deployment*

398 A key finding of this study was the decline in model performance observed in a large,
399 geographically and demographically distinct external cohort, reflecting conditions expected
400 during deployment across diverse real-world care environments. This attenuation in performance

401 is not unexpected given the greater clinical complexity, younger patient age distribution, and
402 substantial heterogeneity in echo acquisition and processing across institutions. Variability in
403 vendor-specific image pipelines, operator-dependent acquisition techniques, image quality, and
404 local imaging protocols introduces domain shifts that can meaningfully affect model
405 performance when models are applied beyond their development settings.

406 These results highlight the importance of diverse cohort training, rigorous external
407 validation, and ongoing performance monitoring as AI-based echo tools are deployed across
408 heterogeneous health systems globally. Strategies such as retraining with more diverse data,
409 domain-aware calibration, and continual evaluation across regions and care contexts will be
410 critical to ensure reliable performance as such tools are extended to settings with differing
411 resources, workflows, and patient populations.

412 *Limitations and Future Directions*

413 Several limitations warrant consideration. First, although model performance for LVEF was
414 within the range of human variability, accuracy for other quantitative measurements was more
415 variable, indicating opportunities for further improvement. Future work will focus on enhancing
416 performance and generalizability through multiple complementary strategies, including
417 exploration of other backbone architectures (such as EchoPrime)¹⁹ or learning approaches (e.g.,
418 adversarial learning⁴¹), development of pediatric cardiology-specific foundation models to learn
419 more robust and anatomically informed representations, and incorporation of multi-institutional
420 or federated learning approaches to better capture heterogeneity across both large referral centers
421 and smaller care settings. Second, despite broad geographic diversity in the external validation
422 cohort, certain regions with substantial unmet clinical need—notably sub-Saharan Africa—were
423 not represented. As a result, generalizability to settings with the greatest burden of pediatric heart

424 disease and the most constrained access to specialty care cannot be assumed and will require
425 targeted evaluation. Third, the current models rely on transthoracic echos acquired by trained
426 sonographers. Extension to low-resource or point-of-care ultrasound environments will
427 necessitate additional validation on portable imaging systems, where image quality and operator
428 variability may differ substantially. Finally, while post-hoc explainability analyses using
429 integrated gradients provided insight into model behavior, further work is needed to determine
430 how such explanations influence clinician trust, interpretability, and decision-making in real-
431 world settings.

432 Future directions should therefore prioritize continued model refinement with an
433 emphasis on robustness to heterogeneous acquisition conditions, prospective multi-site
434 evaluation across diverse healthcare environments, and formal assessment of clinical utility,
435 workflow integration, and impact on patient triage and outcomes.

436

437 *Conclusions*

438 EchoFocus-Measure demonstrates that large-scale, multi-task AI models can provide accurate,
439 automated echo measurements in pediatric populations using routine transthoracic echo. The
440 model outperformed the PanEcho benchmark and achieved external performance comparable to
441 internally reported results in the existing pediatric AI-echo literature for selected measurements.
442 At the same time, these findings underscore the critical importance of rigorous external
443 validation as such tools are extended across heterogeneous care environments. By transparently
444 characterizing both strengths and limitations, this work establishes a foundation for prospective
445 evaluation and iterative deployment strategies aimed at enabling equitable, scalable access to
446 high-quality pediatric cardiac care worldwide.

447

448 **ACKNOWLEDGMENTS:** The authors would like to acknowledge Boston Children's
449 Hospital's High-Performance Computing Resources Clusters Enkefalos 3 (E3) made available
450 for conducting the research reported in this publication.

451

452 **SOURCES OF FUNDING:** This work was supported in part by the Kostin Innovation Fund
453 (JM, JT), Thrasher Research Fund Early Career Award (JM), NIH/NHLBI T32HL007572 (JM),
454 and NIH/NHLBI 2U01HL098147-12 (TG).

455

456 **DISCLOSURES:** Dr. Mayourian serves as a board member of One Heart Health, and as a
457 medical advisor for the Saloni Heart Foundation. Dr. Miller on the scientific advisory board for
458 lavita.ai. One Heart Health, the Saloni Heart Foundation, and lavita.ai had no role in the design,
459 conduct, funding, or reporting of this study.

460

461 **SUPPLEMENTAL MATERIAL:**

462 Tables S1-S3

463 Figure S1

464 **REFERENCES**

465 1. Lai WW, Geva T, Shirali GS, Frommelt PC, Humes RA, Brook MM, Pignatelli RH,
466 Rychik J, Task Force of the Pediatric Council of the American Society of E, Pediatric
467 Council of the American Society of E. Guidelines and standards for performance of a
468 pediatric echocardiogram: a report from the Task Force of the Pediatric Council of the
469 American Society of Echocardiography. *J Am Soc Echocardiogr.* 2006;19:1413-1430.
470 doi: 10.1016/j.echo.2006.09.001

471 2. Leerink JM, van der Pal HJH, Kremer LCM, Feijen EAM, Meregalli PG, Pourier MS,
472 Merkx R, Bellersen L, van Dalen EC, Loonen J, et al. Refining the 10-Year Prediction of
473 Left Ventricular Systolic Dysfunction in Long-Term Survivors of Childhood Cancer.
474 *JACC CardioOncol.* 2021;3:62-72. doi: 10.1016/j.jaccao.2020.11.013

475 3. Kantor PF, Shi L, Colan SD, Orav EJ, Wilkinson JD, Hamza TH, Webber SA, Canter
476 CE, Towbin JA, Everitt MD, et al. Progressive Left Ventricular Remodeling for
477 Predicting Mortality in Children With Dilated Cardiomyopathy: The Pediatric
478 Cardiomyopathy Registry. *J Am Heart Assoc.* 2024;13:e022557. doi:
479 10.1161/JAHA.121.022557

480 4. Geva T, Wald RM, Bucholz E, Cnota JF, McElhinney DB, Mercer-Rosa LM, Mery CM,
481 Miles AL, Moore J, American Heart Association Council on Lifelong Congenital Heart
482 D, et al. Long-Term Management of Right Ventricular Outflow Tract Dysfunction in
483 Repaired Tetralogy of Fallot: A Scientific Statement From the American Heart
484 Association. *Circulation.* 2024;150:e689-e707. doi: 10.1161/CIR.0000000000001291

485 5. Morris SA, Flyer JN, Yetman AT, Quezada E, Cappella ES, Dietz HC, Milewicz DM,
486 Ouzounian M, Rigelsky CM, Tierney S, et al. Cardiovascular Management of Aortopathy

487 in Children: A Scientific Statement From the American Heart Association. *Circulation*.
488 2024;150:e228-e254. doi: 10.1161/CIR.0000000000001265

489 6. Zheleva B, Atwood JB. The invisible child: childhood heart disease in global health.
490 *Lancet*. 2017;389:16-18. doi: 10.1016/S0140-6736(16)32185-7

491 7. Tchervenkov CI, Jacobs JP, Bernier PL, Stellin G, Kurosawa H, Mavroudis C, Jonas RA,
492 Cicek SM, Al-Halees Z, Elliott MJ, et al. The improvement of care for paediatric and
493 congenital cardiac disease across the World: a challenge for the World Society for
494 Pediatric and Congenital Heart Surgery. *Cardiol Young*. 2008;18 Suppl 2:63-69. doi:
495 10.1017/S1047951108002801

496 8. Aldersley T, Ali S, Dawood A, Edwin F, Jenkins K, Joachim A, Lawrenson J, Reddy D,
497 Boumzebra D, St Louis JD, et al. A Landscape Analysis of Pediatric and Congenital
498 Heart Disease Services in Africa. *Cardiol Young*. 2025;35:1782-1791. doi:
499 10.1017/S1047951125100504

500 9. Kumar RK, Zheleva B, Hasan B. Confronting Global Inequity in Pediatric Cardiac Care:
501 From Crisis to Opportunity. *J Am Coll Cardiol*. 2025;86:2161-2163. doi:
502 10.1016/j.jacc.2025.07.070

503 10. Awuah WA, Adebayo FT, Wellington J, Ghosh S, Tenkorang PO, Machai PNM,
504 Abdul-Rahman T, Mani S, Salam A, Papadakis M. A reflection of Africa's cardiac
505 surgery capacity to manage congenital heart defects: a perspective. *Ann Med Surg (Lond)*.
506 2023;85:4174-4181. doi: 10.1097/MS9.0000000000001054

507 11. Deng L, Li Q, Cheng Z. Evaluating the global, regional, and national burden of
508 congenital heart disease in infants younger than 1 year: a 1990-2021 systematic analysis

509 for the GBD study 2021. *Front Pediatr.* 2025;13:1467914. doi:
510 10.3389/fped.2025.1467914

511 12. Reddy CD, Lopez L, Ouyang D, Zou JY, He B. Video-Based Deep Learning for
512 Automated Assessment of Left Ventricular Ejection Fraction in Pediatric Patients. *J Am
513 Soc Echocardiogr.* 2023;36:482-489. doi: 10.1016/j.echo.2023.01.015

514 13. Reddy C, Yan Y, Qiu M, Tang Y, Jin B, Han Z, Li Y, Zhou S, Tang Q, Xiao H, et al. AI
515 learning for pediatric right ventricular assessment: development and validation across
516 multiple centers. *NPJ Digit Med.* 2025;8:752. doi: 10.1038/s41746-025-02123-x

517 14. Holste G, Oikonomou EK, Tokodi M, Kovacs A, Wang Z, Khera R. Complete AI-
518 Enabled Echocardiography Interpretation With Multitask Deep Learning. *JAMA.*
519 2025;334:306-318. doi: 10.1001/jama.2025.8731

520 15. Ouyang D, He B, Ghorbani A, Yuan N, Ebinger J, Langlotz CP, Heidenreich PA,
521 Harrington RA, Liang DH, Ashley EA, et al. Video-based AI for beat-to-beat assessment
522 of cardiac function. *Nature.* 2020;580:252-256. doi: 10.1038/s41586-020-2145-8

523 16. Sahashi Y, Ieki H, Yuan V, Christensen M, Vukadinovic M, Binder-Rodriguez C, Rhee J,
524 Zou JY, He B, Cheng P, et al. Artificial Intelligence Automation of Echocardiographic
525 Measurements. *J Am Coll Cardiol.* 2025;86:964-978. doi: 10.1016/j.jacc.2025.07.053

526 17. Poterucha TJ, Elias P, Lukyanenko P, Mayourian J. Seeing Is Believing: Intelligence Is
527 Artificial, Responsibility Is Not. *J Am Coll Cardiol.* 2025;86:979-981. doi:
528 10.1016/j.jacc.2025.08.029

529 18. Long A, Haggerty CM, Finer J, Hartzel D, Jing L, Keivani A, Kelsey C, Rocha D, Ruhl J,
530 vanMaanen D, et al. Deep Learning for Echo Analysis, Tracking, and Evaluation of

531 Mitral Regurgitation (DELINEATE-MR). *Circulation*. 2024;150:911-922. doi:
532 10.1161/CIRCULATIONAHA.124.068996

533 19. Vukadinovic M, Chiu IM, Tang X, Yuan N, Chen TY, Cheng P, Li D, Cheng S, He B,
534 Ouyang D. Comprehensive echocardiogram evaluation with view primed vision language
535 AI. *Nature*. 2025. doi: 10.1038/s41586-025-09850-x

536 20. Gearhart A, Goto S, Deo RC, Powell AJ. An Automated View Classification Model for
537 Pediatric Echocardiography Using Artificial Intelligence. *J Am Soc Echocardiogr*.
538 2022;35:1238-1246. doi: 10.1016/j.echo.2022.08.009

539 21. Sharma P, Gearhart A, Luo G, Palepu A, Wang C, Mayourian J, Beam K, Spyropoulos F,
540 Powell AJ, Levy P, et al. Development and Validation of a Novel Deep Learning Model
541 to Predict Pharmacologic Closure of Patent Ductus Arteriosus in Premature Infants. *J Am*
542 *Soc Echocardiogr*. 2025;38:624-632. doi: 10.1016/j.echo.2025.03.018

543 22. Gearhart A, Anjewierden S, Buddhe S, Tandon A. Review of the Current State of
544 Artificial Intelligence in Pediatric Cardiovascular Magnetic Resonance Imaging.
545 *Children (Basel)*. 2025;12. doi: 10.3390/children12040416

546 23. Brown K, Roshanitabrizi P, Rwebembeira J, Okello E, Beaton A, Linguraru MG, Sable
547 CA. Using Artificial Intelligence for Rheumatic Heart Disease Detection by
548 Echocardiography: Focus on Mitral Regurgitation. *J Am Heart Assoc*. 2024;13:e031257.
549 doi: 10.1161/JAHA.123.031257

550 24. Collins GS, Moons KGM, Dhiman P, Riley RD, Beam AL, Van Calster B, Ghassemi M,
551 Liu X, Reitsma JB, van Smeden M, et al. TRIPOD+AI statement: updated guidance for
552 reporting clinical prediction models that use regression or machine learning methods.
553 *BMJ*. 2024;385:e078378. doi: 10.1136/bmj-2023-078378

554 25. Margossian R, Chen S, Sleeper LA, Tani LY, Shirali G, Golding F, Selamet Tierney ES,
555 Altmann K, Campbell MJ, Szwast A, et al. The reproducibility and absolute values of
556 echocardiographic measurements of left ventricular size and function in children are
557 algorithm dependent. *J Am Soc Echocardiogr*. 2015;28:549-558 e541. doi:
558 10.1016/j.echo.2015.01.014

559 26. Colan SD. Early Database Initiatives: The Fyler Codes. In: Barach PR, Jacobs JP,
560 Lipshultz SE, Laussen PC, eds. *Pediatric and Congenital Cardiac Care: Volume 1: Outcomes Analysis*. London: Springer London; 2015:163-169.

562 27. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L,
563 Polosukhin I. Attention Is All You Need. 2017. doi: 10.48550/arXiv.1706.03762

564 28. Liu Z, Mao H, Wu C-Y, Feichtenhofer C, Darrell T, Xie S. A ConvNet for the 2020s.
565 2022. doi: 10.48550/arXiv.2201.03545

566 29. Loshchilov I, Hutter F. Decoupled Weight Decay Regularization. 2017. doi:
567 10.48550/arXiv.1711.05101

568 30. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple
569 way to prevent neural networks from overfitting. *J Mach Learn Res*. 2014;15:1929–1958.

570 31. Mayourian J, La Cava WG, Vaid A, Nadkarni GN, Ghelani SJ, Mannix R, Geva T,
571 Dionne A, Alexander ME, Duong SQ, et al. Pediatric ECG-Based Deep Learning to
572 Predict Left Ventricular Dysfunction and Remodeling. *Circulation*. 2024;149:917-931.
573 doi: 10.1161/CIRCULATIONAHA.123.067750

574 32. Sundararajan M, Taly A, Yan Q. Axiomatic Attribution for Deep Networks. 2017. doi:
575 10.48550/arXiv.1703.01365

576 33. Yuan Y, Li C, Lei S, Nawaz A, Li J, Akram MJ, Liu L, Sun H, Pan B, Lv T, et al. Global
577 Burden and Disparities in Pediatric Heart Failure: 1990-2021. *JACC Heart Fail.*
578 2025;13:102484. doi: 10.1016/j.jchf.2025.03.032

579 34. Lu Y. Leveraging Global Data to Illuminate Pediatric Heart Failure: Promise, Gaps, and
580 the Path Forward. *JACC Heart Fail.* 2025;13:102500. doi: 10.1016/j.jchf.2025.04.011

581 35. Yang C, Jia Y, Zhang C, Jin Z, Ma Y, Bi X, Tian A. Global, regional, and national
582 burdens of heart failure in adolescents and young adults aged 10-24 years from 1990 to
583 2021: an analysis of data from the Global Burden of Disease Study 2021.
584 *EClinicalMedicine.* 2025;79:102998. doi: 10.1016/j.eclim.2024.102998

585 36. Bergh N, Skoglund K, Fedchenko M, Bollano E, Eriksson P, Dellborg M, Wai Giang K,
586 Mandalenakis Z. Risk of Heart Failure in Congenital Heart Disease: A Nationwide
587 Register-Based Cohort Study. *Circulation.* 2023;147:982-984. doi:
588 10.1161/CIRCULATIONAHA.122.061546

589 37. Agasthi P, Van Houten HK, Yao X, Jain CC, Egbe A, Warnes CA, Miranda WR, Dunlay
590 SM, Stephens EH, Johnson JN, et al. Mortality and Morbidity of Heart Failure
591 Hospitalization in Adult Patients With Congenital Heart Disease. *J Am Heart Assoc.*
592 2023;12:e030649. doi: 10.1161/JAHA.123.030649

593 38. Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, Ahmed M, Aksut B,
594 Alam T, Alam K, et al. Global, Regional, and National Burden of Cardiovascular
595 Diseases for 10 Causes, 1990 to 2015. *J Am Coll Cardiol.* 2017;70:1-25. doi:
596 10.1016/j.jacc.2017.04.052

597 39. Vervoort D, Jin H, Edwin F, Kumar RK, Malik M, Tapaua N, Verstappen A, Hasan BS.

598 Global Access to Comprehensive Care for Paediatric and Congenital Heart Disease. *CJC*

599 *Pediatr Congenit Heart Dis.* 2023;2:453-463. doi: 10.1016/j.cjcpc.2023.10.001

600 40. He B, Kwan AC, Cho JH, Yuan N, Pollick C, Shiota T, Ebinger J, Bello NA, Wei J,

601 Josan K, et al. Blinded, randomized trial of sonographer versus AI cardiac function

602 assessment. *Nature*. 2023;616:520-524. doi: 10.1038/s41586-023-05947-3

603 41. Donahue J, Krähenbühl P, Darrell T. Adversarial Feature Learning. 2016. doi:

604 10.48550/arXiv.1605.09782

605

606 **TABLES**

607

Table 1: Baseline Characteristics of Internal and External Cohorts

	Internal Development	Internal Test	External
Patients	60,269	15,068	2,506
Sex (Male)	32,162 (53.36%)	8051 (53.43%)	1,391 (55.51%)
ASD	3,019 (5.01%)	789 (5.24%)	282 (11.25%)
Anomalous Coronaries	299 (0.50%)	72 (0.48%)	33 (1.32%)
Bicuspid Aortic Valve	1,213 (2.01%)	286 (1.90%)	123 (4.91%)
Double Aortic Arch	82 (0.14%)	17 (0.11%)	6 (0.24%)
DORV	156 (0.26%)	42 (0.28%)	79 (3.15%)
D-loop TGA	228 (0.38%)	69 (0.46%)	44 (1.76%)
Ebstein Anomaly	91 (0.15%)	17 (0.11%)	40 (1.60%)
HLHS	188 (0.31%)	48 (0.32%)	63 (2.51%)
IAA	36 (0.06%)	13 (0.09%)	8 (0.32%)
L-loop TGA	65 (0.11%)	15 (0.10%)	48 (1.92%)
PAPVC	262 (0.43%)	67 (0.44%)	24 (0.96%)
Patent Ductus Arteriosus	4,649 (7.71%)	1,110 (7.37%)	179 (7.14%)
Right Aortic Arch	464 (0.77%)	117 (0.78%)	38 (1.52%)
Tricuspid Atresia	69 (0.11%)	26 (0.17%)	11 (0.44%)
Truncus arteriosus	48 (0.08%)	13 (0.09%)	15 (0.60%)
Single Ventricle Disease	313 (0.52%)	87 (0.58%)	93 (3.71%)
Tetralogy of Fallot	505 (0.84%)	114 (0.76%)	56 (2.23%)
AVCD	414 (0.69%)	101 (0.67%)	146 (5.83%)
VSD	3,204 (5.32%)	767 (5.09%)	293 (11.69%)
Coarctation of the Aorta	830 (1.38%)	179 (1.19%)	82 (3.27%)
Pulmonary Atresia	255 (0.42%)	44 (0.29%)	56 (2.23%)
TAPVC	59 (0.10%)	25 (0.17%)	17 (0.68%)
Any Non-Critical CHD	10,346 (17.17%)	2,550 (16.92%)	826 (32.96%)
Any Critical CHD	2,547 (4.23%)	606 (4.02%)	543 (21.67%)
Any CHD	11,153 (18.51%)	2,741 (18.19%)	1,097 (43.77%)
Any Cardiomyopathy	1,059 (1.76%)	227 (1.51%)	39 (1.56%)

608 Data presented as median (interquartile range).

609 **Abbreviations:** atrial septal defect (ASD); double outlet right ventricle (DORV); transposition
610 of the great arteries (TGA); hypoplastic left heart syndrome (HLHS); interrupted aortic arch
611 (IAA); partial anomalous pulmonary venous connection (PAPVC); atrioventricular canal defect
612 (AVCD); ventricular septal defect (VSD); total anomalous pulmonary venous connection
613 (TAPVC).

614

615

Table 2: Echo Characteristics of Internal and External Cohorts

	Internal Development	Internal Test	External
Number of Echos	174,042	43,393	3,096
Videos	9,099,124	2,271,924	289,613
Videos Per Study	47 (36, 66)	47 (36, 66)	44 (29, 62)
Age at Echo	8.49 (1.13,16.57)	8.46 (1.18,16.46)	3.52 (0.55,11.11)
Echos with ≥ 1 Measure	150,836	37,652	1,915
Aortic Valve Diameter (cm)	1.66 (1.14,2.00)	1.66 (1.15,1.99)	1.35 (0.91,1.81)
Aortic Root Diameter (cm)	2.37 (1.70,2.88)	2.38 (1.72,2.88)	2.00 (1.40,2.60)
LVEF (%)	61 (58,65)	61 (58,65)	62 (57,66)
LVEDV (mL)	73.20 (27.40,127.00)	75.30 (27.30,127.10)	61.45 (20.22,116.15)
LV Posterior Wall Thickness (cm)	0.66 (0.52,0.78)	0.66 (0.52,0.78)	0.66 (0.50,0.82)
Septal Wall Thickness (cm)	0.69 (0.55,0.83)	0.69 (0.55,0.82)	0.71 (0.57,0.93)
LV Mass (g)	59.40 (23.50,105.70)	60.90 (23.50,105.90)	49.40 (19.45,98.20)
LVESV (mL)	27.40 (10.40,48.80)	28.10 (10.32,48.80)	22.80 (7.60,43.75)
Mitral Valve Diameter (cm)	2.09 (1.29,2.61)	2.10 (1.28,2.62)	1.77 (1.26,2.42)
MPA Diameter (cm)	1.85 (1.10,2.37)	1.87 (1.12,2.39)	1.50 (1.02,2.16)
Pulmonary Valve Diameter (cm)	1.67 (0.91,2.36)	1.63 (0.92,2.35)	1.22 (0.91,1.81)
Tricuspid Valve Diameter	2.20 (1.51,2.70)	2.20 (1.51,2.70)	2.00 (1.40,2.59)
Left Atrial Volume (mL)	37.60 (23.80,53.50)	37.80 (23.80,53.90)	28.90 (14.70,42.90)
Right Atrial Volume (mL)	27.90 (13.60,48.00)	29.90 (13.60,49.00)	24.60 (17.60,43.40)
RV Longitudinal Strain (%)	-20.50 (-24.00,-16.50)	-20.50 (-24.10,-16.70)	—
LV Circumferential Strain (%)	-28.90 (-32.10,-25.20)	-29.00 (-32.30,-25.20)	—
LV Longitudinal Strain (%)	-20.80 (-23.20,-18.10)	-20.80 (-23.20,-18.10)	—
RV Free Wall Strain (%)	-22.50 (-27.50,-17.90)	-22.80 (-27.60,-18.00)	—
LVOTO	1,666 (0.96%)	337 (0.78%)	89 (2.87%)
Aortic Regurgitation	3,066 (1.76%)	816 (1.88%)	135 (4.36%)
Aortic Stenosis	1,707 (0.98%)	306 (0.71%)	37 (1.20%)
Mitral Regurgitation	5,395 (3.10%)	1,368 (3.15%)	227 (7.33%)
RV Hypertension	17,195 (9.88%)	4,300 (9.91%)	256 (8.27%)
Tricuspid Regurgitation	9,215 (5.29%)	2,129 (4.91%)	220 (7.11%)
LV Systolic Dysfunction	7,491 (4.30%)	1,831 (4.22%)	58 (1.87%)
Pulmonary Regurgitation	5,339 (3.07%)	1,382 (3.18%)	105 (3.39%)
LV Hypertrophy	2,614 (1.50%)	608 (1.40%)	62 (2.00%)
RVOTO	5,065 (2.91%)	1,242 (2.86%)	172 (5.56%)

616

Data presented as median (interquartile range).

617

Abbreviations: left ventricular end-diastolic volume (LVEDV); left ventricular end-systolic volume (LVESV); main pulmonary artery (MPA); right ventricle (RV); LV outflow tract obstruction (LVOTO); RV outflow tract obstruction (RVOTO).

618

619

620

621

Table 3: Benchmarking EchoFocus-Measure to PanEcho

	Internal		External	
	EchoFocus-Measure	PanEcho	EchoFocus-Measure	PanEcho
Overall Cohort	2.77 (1.32,4.80)	7.30 (4.04,10.97)	3.81 (1.77,6.68)	7.86 (3.95,12.34)
Age Subgroups (years)				
<1	3.18 (1.50,5.60)	7.54 (4.08,11.52)	4.43 (2.01,7.70)	8.20 (4.15,12.59)
1-3	2.96 (1.35,5.06)	8.43 (4.70,12.16)	3.81 (2.04,6.82)	9.16 (4.42,14.32)
3-8	2.60 (1.25,4.50)	8.08 (5.05,11.40)	3.96 (2.08,6.34)	8.51 (4.63,12.66)
8-12	2.73 (1.32,4.58)	7.35 (4.13,10.99)	3.41 (1.66,6.55)	7.67 (3.80,12.30)
12-18	2.57 (1.23,4.36)	6.39 (3.39,9.84)	3.29 (1.52,5.19)	6.57 (2.89,11.01)
≥18	2.75 (1.33,4.76)	7.04 (3.77,10.63)	3.38 (1.50,7.71)	5.61 (3.19,10.55)
Lesion Subgroups				
AP window	2.55 (0.77,4.93)	11.51 (10.11,14.10)	—	—
ASD	3.14 (1.48,5.59)	8.18 (4.69,12.34)	4.62 (2.07,6.78)	8.49 (5.39,12.94)
Anomalous Coronaries	2.75 (1.48,4.44)	6.30 (2.97,10.02)	—	—
Bicuspid Aortic Valve	3.04 (1.41,5.40)	8.13 (4.86,12.29)	5.23 (2.38,7.73)	7.93 (3.36,12.96)
Cor Triatriatum	3.10 (1.71,5.69)	11.73 (8.92,16.34)	—	—
Double Aortic Arch	1.78 (0.65,3.08)	7.98 (5.18,8.84)	—	—
DORV	4.17 (2.07,8.04)	9.00 (5.32,12.85)	—	—
D-loop TGA	2.36 (1.06,4.13)	9.06 (6.16,11.45)	—	—
Ebstein Anomaly	3.78 (1.63,6.92)	8.87 (3.54,11.66)	—	—
HLHS	5.76 (2.81,8.25)	12.98 (7.12,15.57)	—	—
Interrupted Aortic Arch	3.46 (1.32,5.63)	10.63 (6.41,14.32)	—	—
L-loop TGA	3.95 (1.30,7.19)	13.12 (7.03,15.84)	—	—
PAPVC	3.00 (1.43,4.78)	9.56 (5.90,13.53)	—	—
PDA	3.13 (1.49,5.63)	8.31 (4.66,12.30)	5.29 (2.52,8.42)	8.16 (4.88,13.39)
Right Aortic Arch	3.04 (1.52,5.26)	7.67 (4.60,11.52)	—	—
Tricuspid atresia	3.18 (1.97,5.84)	6.74 (3.62,10.32)	—	—
Truncus Arteriosus	2.46 (1.58,4.51)	7.63 (5.16,10.57)	—	—
Any SV Disease	4.84 (2.50,8.07)	9.94 (5.55,14.89)	—	—
Tetralogy of Fallot	3.08 (1.50,5.35)	9.08 (5.68,12.92)	—	—
AVCD	3.42 (1.65,6.21)	8.03 (4.48,12.02)	4.77 (1.93,8.77)	9.41 (6.41,15.60)
VSD	3.11 (1.43,5.44)	7.89 (4.48,11.61)	3.89 (1.67,6.71)	7.93 (4.23,11.31)
Coarctation of the Aorta	3.48 (1.53,6.38)	8.70 (4.71,12.82)	5.77 (3.49,8.50)	8.06 (5.02,11.96)
Pulmonary Atresia	3.26 (1.50,6.35)	8.34 (5.21,12.41)	—	—
TAPVC	3.20 (1.83,4.21)	5.16 (1.02,9.00)	—	—
Critical Aortic Stenosis	3.33 (2.02,6.80)	12.23 (8.03,15.04)	—	—
Critical Pulmonary Stenosis	2.24 (1.33,6.52)	5.63 (3.29,9.34)	—	—
Any Non-Critical CHD	2.98 (1.42,5.32)	8.02 (4.60,11.90)	4.29 (1.99,7.27)	7.76 (4.36,12.07)
Any Critical CHD	3.32 (1.55,6.08)	8.72 (5.14,12.76)	5.48 (2.46,8.87)	8.69 (4.83,13.26)
Any CHD	2.98 (1.41,5.31)	8.07 (4.66,11.93)	4.36 (1.96,7.35)	7.89 (4.38,12.30)
No CHD	2.60 (1.25,4.39)	6.73 (3.63,10.05)	3.33 (1.59,6.10)	7.81 (3.43,12.18)
Any Cardiomyopathy	3.23 (1.62,5.64)	8.28 (4.35,12.83)	5.07 (2.00,8.09)	10.51 (4.72,15.75)

622
623
624
625
626

Abbreviations: aortopulmonary (AP); atrial septal defect (ASD); double outlet right ventricle (DORV); transposition of the great arteries (TGA); hypoplastic left heart syndrome (HLHS); partial anomalous pulmonary venous connection (PAPVC); patent ductus arteriosus (PDA); single ventricle (SV); atrioventricular canal defect (AVCD); ventricular septal defect (VSD); total anomalous pulmonary venous connection (TAPVC); congenital heart disease (CHD).

627 **FIGURES**
628

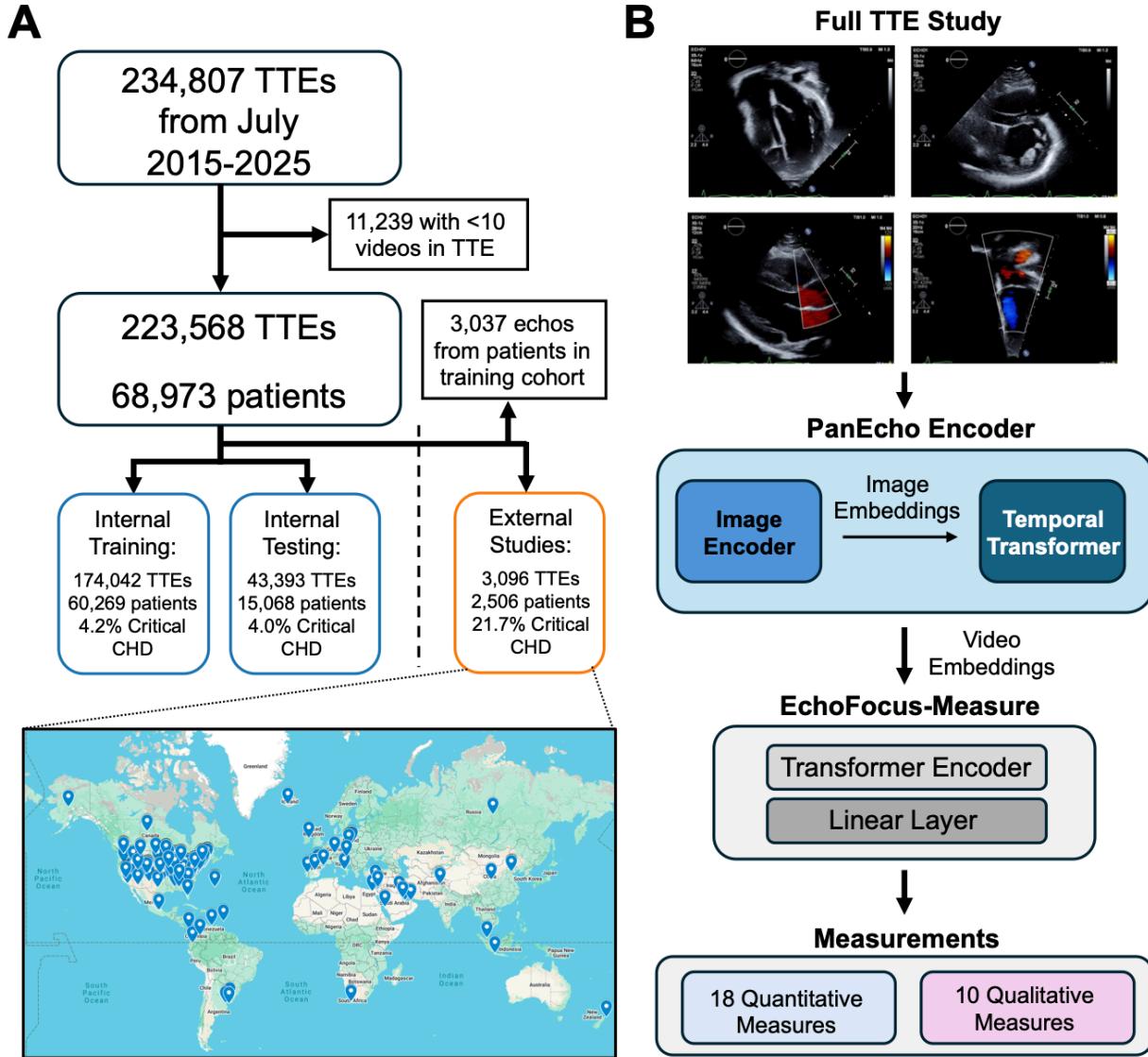
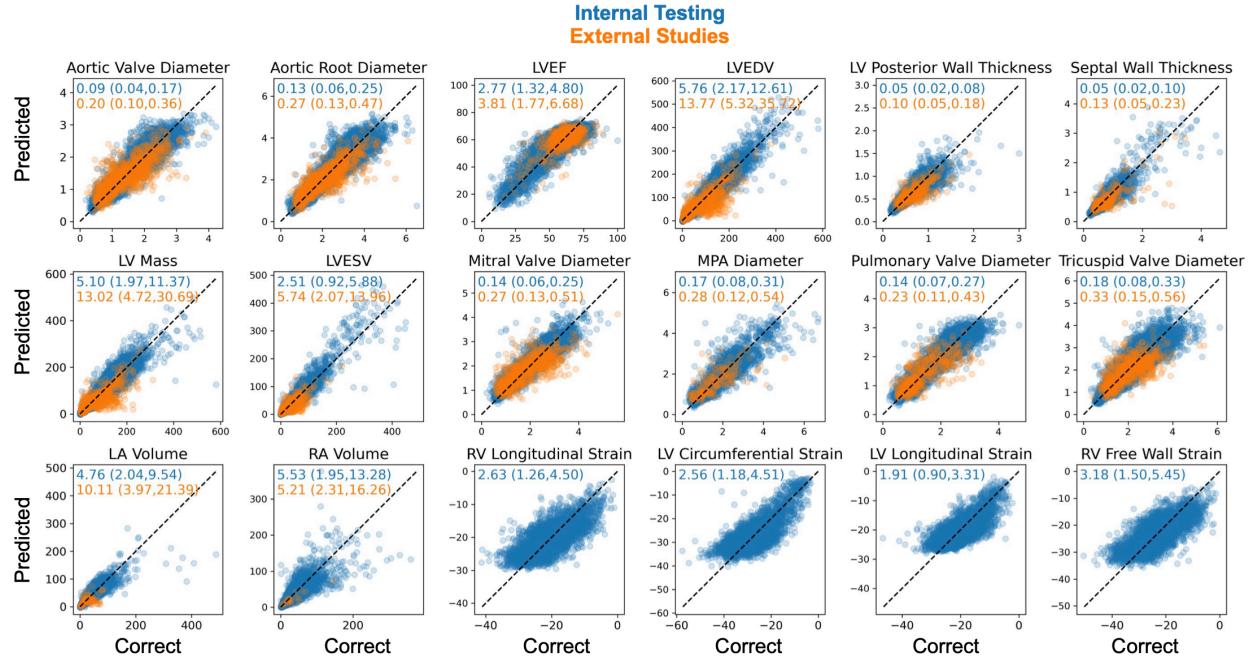


Figure 1: Study Design and Model Architecture. (A) Study design schematic with STROBE diagram showing initial patient selection and filtering to form the main cohort. Pins of origin countries for external patients inset. (B) EchoFocus-Measure architecture schematic and outcome targets.

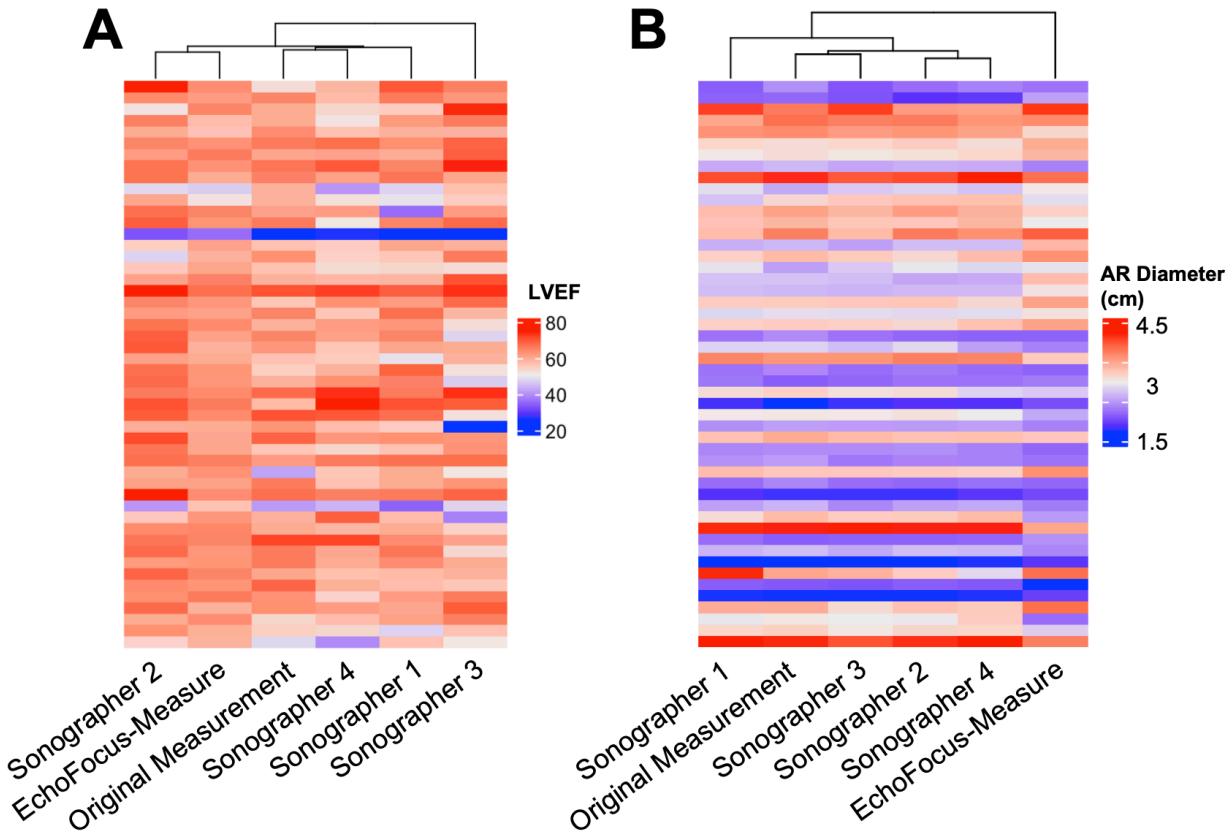
Abbreviations: transthoracic echo (TTE).



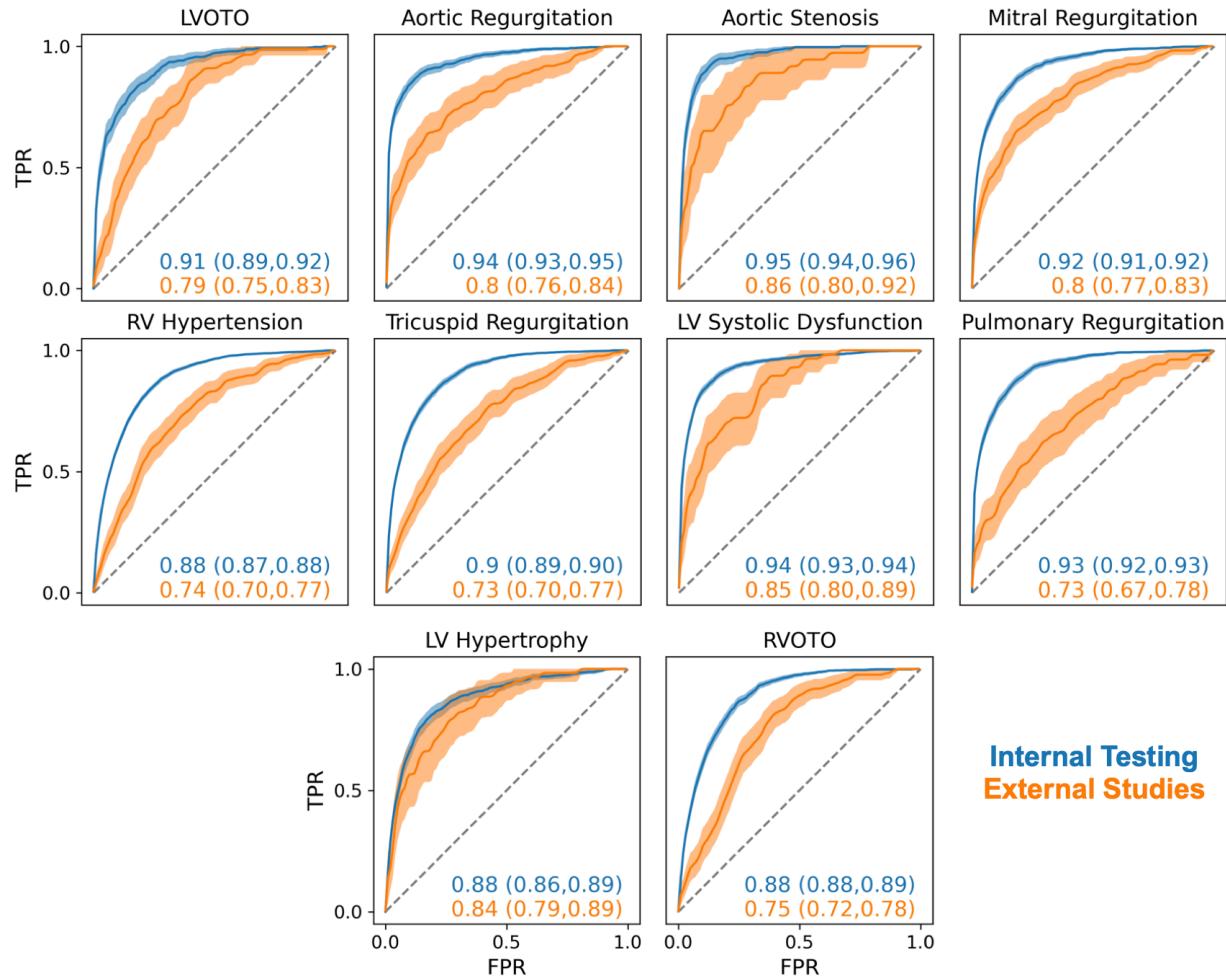
635
636
637
638
639
640
641

Figure 2: EchoFocus-Measure Regression Task Performance. Internal (blue) and external (orange) performance of EchoFocus-Measure to predict 18 measurements in the pediatric and CHD population. MAE values inset. Dotted line represents the identity line.

Abbreviations: left ventricular ejection fraction (LVEF); LV end-diastolic volume (LVEDV); LV end-systolic volume (LVESV); main pulmonary artery (MPA); left atrium (LA); right atrium (RA); right ventricle (RV).



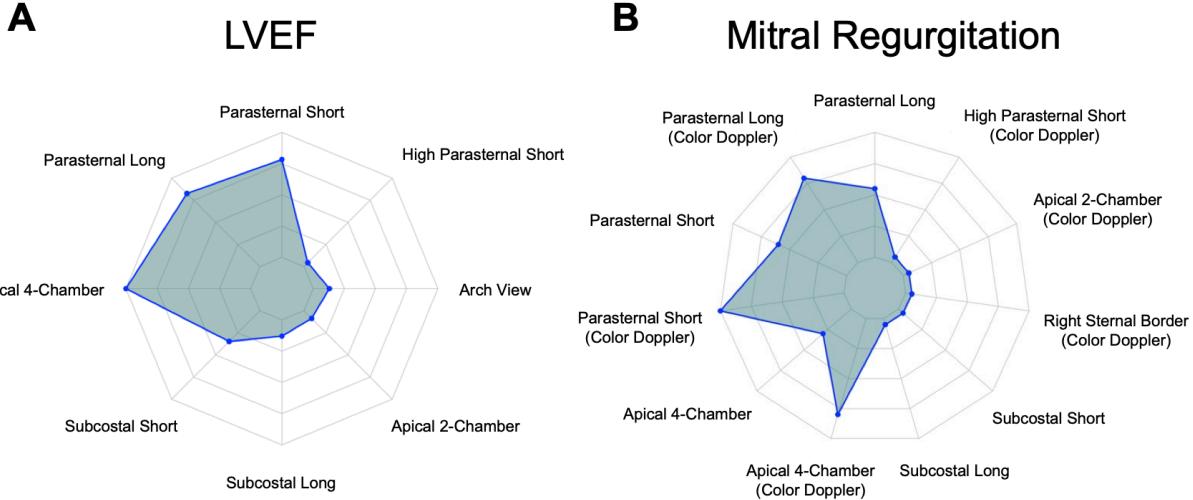
642
643 **Figure 3. Sonographer Adjudication of Discrepant Cases.** Expert adjudication was performed
644 on 50 discrepant (A) LVEF cases and (B) 50 discrepant aortic root diameter cases. Heatmap with
645 hierarchical clustering displaying measurements of individual sonographers versus EchoFocus-
646 Measure versus the original measurement.
647



648
649
650
651
652
653
654

Figure 4: EchoFocus-Measure Performance for Qualitative Outcomes. Performance of the qualitative EchoFocus-Measure model to predict 10 qualitative measures during internal (blue) and external (orange) testing. Dotted line represents chance. 95% confidence intervals are shown using bootstrapping.

Abbreviations: Left ventricular outflow tract obstruction (LVOTO); right ventricle (RV); RV outflow tract obstruction (RVOTO).



655
656
657

Figure 5: Model Explainability Analysis. Radar plots of top views selected during explainability analysis for (A) LVEF and (B) mitral regurgitation.