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 2 

ABSTRACT 27 

Background: Echocardiography (echo) is a cornerstone of pediatric cardiology, yet access to 28 

expert interpreters is limited worldwide, particularly in low-resource and rural settings. Artificial 29 

intelligence (AI) offers a mechanism to broadly deliver expert-level precision and standardize 30 

measurements, yet AI for comprehensive automated measurements in pediatric and congenital 31 

heart disease (CHD) echo remains underdeveloped. 32 

Methods: We created EchoFocus-Measure, an AI platform that automatically extracts 18 33 

quantitative parameters and 10 qualitative assessments from full echo studies. The method 34 

extends a multi-task, view-agnostic architecture (PanEcho) with a study-level transformer to 35 

prioritize diagnostically informative views. Training (80%) and internal testing (20%) were 36 

performed on echos from Boston Children’s Hospital (BCH), with external evaluation on outside 37 

referral studies. Left ventricular ejection fraction (LVEF) was the primary endpoint. 38 

Results: The internal cohort included 11.4 million videos from 217,435 echos (60,269 patients; 39 

median age 8.5 years; median LVEF 61%), and external validation encompassed 289,613 videos 40 

from 3,096 echos (2,506 patients; median age 3.5 years; median LVEF 62%). For LVEF, 41 

EchoFocus-Measure exhibited a median absolute error (MAE) of 2.8% internally and 3.8% 42 

externally, maintaining accuracy across infants (MAE 3.2%) and complex CHD lesions (e.g., 43 

MAE 4.0% for L-loop transposition of the great arteries). EchoFocus-Measure improved upon 44 

the PanEcho benchmark (MAE 7.5% for infants; 13.1% for L-loop transposition). Discrepant 45 

case (>50th percentile error) adjudication of LVEF demonstrated that model errors (MAE 2.4%) 46 

were within human variability (MAE 3.7%). For qualitative measures, EchoFocus-Measure 47 

performed well internally (AUROC 0.88-0.95) and modestly externally (AUROC 0.73-0.86). 48 

Explainability analyses highlighted model focus on clinically appropriate echo views for LVEF 49 
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estimation (apical four-chamber, parasternal short/long) and mitral regurgitation assessment 50 

(apical four-chamber color Doppler, parasternal short/long color Doppler). 51 

Conclusions: EchoFocus-Measure delivers rapid and reliable automated echo measurements 52 

across ages and lesions within diverse internal and real-world external cohorts, serving as a step 53 

toward scalable, global access to high-quality pediatric cardiovascular care.  54 

Keywords: Artificial Intelligence; Pediatric Cardiology; Echocardiography; Congenital Heart 55 

Disease 56 

  57 
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INTRODUCTION 58 

Transthoracic echocardiography (echo) is a noninvasive, portable imaging modality that forms 59 

the foundation of pediatric cardiology worldwide by enabling diagnosis and longitudinal 60 

assessment of pediatric and congenital heart disease (CHD).1 Accurate measurements of 61 

ventricular function,2 chamber dimensions,3 and valvar structure and performance4,5 are essential 62 

for timely diagnosis, monitoring disease progression, and guiding clinical decision-making. 63 

Reliable echo assessment requires specialized training that remains maldistributed globally. In 64 

many rural regions and low- and middle-income countries (LMICs), limited access to expert 65 

interpretation constrains the clinical utility of echo,6-10 contributing to delayed disease 66 

recognition and widening disparities in pediatric cardiovascular outcomes.9,11 Even in high-67 

resource healthcare settings, substantial inter-operator and inter-institutional variability 68 

underscores the need for standardized, reproducible echo measurements to ensure consistent 69 

care.12,13 70 

Recent advances in artificial intelligence (AI) have begun to reshape echo, particularly in 71 

adult populations where AI-based systems have progressed from automating individual 72 

measurements to supporting comprehensive, study-level interpretation.14-19 However, this 73 

progress lags in pediatric and CHD echo due to the unique challenges of anatomic variation and 74 

evolving physiologic states from infancy to adulthood. Consequently, prior efforts have largely 75 

focused on narrowly scoped tasks (e.g., recognizing standard imaging views, extracting 76 

individual measurements, or identifying specific CHD lesions),12,13,20-23 leaving an unmet need 77 

for broad, scalable, study-level measurement tools to support routine pediatric cardiac care.  78 

To address this gap, we developed EchoFocus‑Measure, a multi-task, study-level AI‑echo 79 

model designed to generate 18 quantitative and 10 qualitative measurements. We evaluated real-80 
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world performance and generalizability using echos from 37 countries across five continents, 81 

with the goal of enabling scalable automated measurements for global standardization and 82 

expanding access to high-quality pediatric echo assessment worldwide.  83 
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METHODS 84 

This study is reported in accordance with the TRIPOD+AI 2024 guidelines.24  85 

Patient Population and Patient Assignment  86 

Echo data were retrospectively obtained at Boston Children’s Hospital (BCH) from July 2015 87 

through July 2025. All available transthoracic echos acquired during this period were screened 88 

for inclusion. Studies failing predefined quality control standards (described in “Data Retrieval, 89 

Pre-Processing, and Quality Control”) were excluded, yielding the main study cohort. 90 

Echos were grouped based on acquisition site into internal studies (performed at BCH or 91 

affiliated outpatient centers) and external referral studies. The internal dataset was further 92 

subdivided by randomly allocating patients 80:20 to model development and testing sets, 93 

respectively. There was no patient overlap between development and test cohorts. 94 

Definition of Outcomes 95 

For both internal and external cohorts, the ground truth outcome label was derived from the final 96 

clinical report generated by a BCH attending pediatric cardiologist with subspecialty training in 97 

noninvasive pediatric cardiac imaging. This approach holds the interpretation standard constant, 98 

allowing the external validation to primarily assess model robustness to image acquisition 99 

heterogeneity arising from different scanners, ultrasound systems, and imaging protocols. 100 

The outcomes of interest were 18 quantitative measures and 10 qualitative measures. The 101 

18 quantitative measures included the following: aortic valve diameter, aortic root diameter, left 102 

ventricular ejection fraction (LVEF), LV end-diastolic volume, LV posterior wall thickness, 103 

septal wall thickness, LV mass, LV end-systolic volume, mitral valve diameter, main pulmonary 104 

artery diameter, pulmonary valve diameter, tricuspid valve diameter, left atrial volume, right 105 

atrial volume, right ventricular longitudinal strain, LV circumferential strain, LV longitudinal 106 
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strain, and RV free wall strain. All internal and external measurements were stored in a 107 

structured database within a custom hospital software. All measurements were transformed into 108 

unitless variables via z-score normalization or Box-Cox transformation. Model outcomes were 109 

evaluated using raw measurement values. The primary outcome was LVEF, which institutionally 110 

is measured via the bullet method (5/6 area-length method).25 111 

The 10 qualitative measures were defined as at least moderate severity of the following: 112 

left ventricular outflow tract obstruction, aortic regurgitation, aortic stenosis, mitral regurgitation, 113 

right ventricular hypertension, tricuspid regurgitation, LV systolic dysfunction, pulmonary 114 

regurgitation, LV hypertrophy, and right ventricular outflow tract obstruction. To create these 115 

labels, we leveraged our institutional Fyler coding system—a detailed, decades-established 116 

anatomic classification system used at BCH and specifically designed for pediatric and CHD.26 117 

For every echo, expert interpreting cardiac imagers assign Fyler codes that capture qualitative 118 

severity grading of ventricular and valvar function, in addition to structural cardiac lesions with 119 

high anatomic granularity. Each of the qualitative labels were marked as negative if they were 120 

qualified as less than moderate severity. Due to the natural history of CHD (e.g., tetralogy of 121 

Fallot) and institutional practice of Fyler code use, right ventricular outflow tract obstruction was 122 

grouped as a composite of pulmonary stenosis, right ventricle-to-pulmonary artery conduit 123 

stenosis, or right ventricular outflow tract obstruction.  124 

Data Retrieval, Pre-Processing, and Quality Control  125 

Echo studies were obtained from the BCH picture archiving and communication system. Studies 126 

with fewer than 10 DICOM files were excluded. The remaining studies were then processed 127 

using a standardized pipeline adapted from PanEcho.14 For each study, raw two-dimensional 128 

echo videos were extracted directly from DICOM files. All data underwent thorough 129 
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deidentification prior to analysis. Each frame was binarized to delineate the primary imaging 130 

region, and pixels outside the largest detected contour were concealed. Videos were then cropped 131 

to the central imaging area, resized to 256 x 256 using bicubic interpolation, and further 132 

anonymized by masking peripheral regions that could contain identifying information.14 133 

EchoFocus-Measure Model Architecture 134 

EchoFocus-Measure is designed to convert a full set of echo video clips from a single study into 135 

a comprehensive set of quantitative or qualitative measurements. The model integrates 136 

information across all videos to emulate the approach of a skilled clinician, who synthesizes 137 

multiple views to generate accurate cardiac assessments. The framework builds on a PanEcho 138 

backbone,14 enhanced with an additional transformer layer to allow the model to focus27 on the 139 

most informative video clips and capture complex inter-video relationships (Figure 1B). 140 

Each video is first converted into 16 random sets of 16 sequential frames (each called 141 

clips); each frame (image) is processed by a 2D convolutional neural network (ConvNeXt-T,28 142 

pretrained on ImageNet) to extract rich feature representations. The resulting individual image 143 

embeddings are sequentially organized and passed through a temporal transformer with four 144 

layers and eight attention heads. Positional encodings preserve temporal order, and clip-level 145 

outputs are aggregated via mean pooling to generate a single clip embedding as a 768-146 

dimensional vector. 147 

EchoFocus-Measure then expands upon the original PanEcho architecture14 and 148 

incorporates an additional transformer that operates across all clip embeddings (number of 149 

videos x 16) to generate a single, study-level embedding. Unlike PanEcho, the transformer 150 

encoder analyzes all video embeddings collectively, enabling the model to identify patterns that 151 

emerge only when multiple views are considered together. The resulting study-level embedding 152 
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is then passed through fully connected layers to produce predictions for measurements of 153 

interest.  154 

Two separate models were trained: a regression model simultaneously predicting 18 155 

quantitative echo measurements, and a binary classification model simultaneously predicting 10 156 

qualitative measurements. For the regression model, echo studies were included if at least one 157 

quantitative measurement was available; missing measurement targets were masked and 158 

excluded from the loss computation. 159 

Model Training Strategy 160 

For model development, echos from the internal development cohort were randomly divided at 161 

the patient level into training and validation subsets using an 80:20 split. The training subset was 162 

used to optimize model parameters, while the validation subset was reserved for model selection 163 

and early stopping. Pretrained PanEcho weights were frozen during training, enabling the 164 

optimization process to focus on the newly introduced study-level transformer encoder and 165 

downstream task-specific prediction layers. 166 

Training was performed using the AdamW optimizer29 with a weight decay coefficient of 167 

0.01. A dynamic learning rate schedule was employed, reducing the learning rate in response to 168 

plateaus in validation loss. Training stopped when no improvement in validation performance 169 

was observed for 10 consecutive epochs. 170 

To enhance robustness to real-world echo variability, several regularization strategies 171 

were applied. Dropout30 was incorporated during training at a rate of 0.2 for weights and 0.5 for 172 

video clips to reduce overfitting and improve tolerance to incomplete or heterogeneous video 173 

inputs. In addition, consistent with prior PanEcho-based approaches,14 data augmentation 174 
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techniques such as random cropping, rotation, and horizontal flipping were applied to mitigate 175 

sensitivity to image acquisition variability and noise. 176 

Hyperparameter optimization was conducted through systematic exploration of key 177 

architectural and training parameters: the number of layers in the study-level transformer encoder 178 

(1, 5, 10, and 20); learning rates ranging from 1e-4 to 1e-2; and effective batch sizes between 32 179 

and 128. The final classification model configuration was selected to minimize aggregate 180 

validation loss across all prediction tasks, while the final regression model was chosen to 181 

minimize LVEF validation error. 182 

Model Performance Assessment and Statistical Analysis 183 

Regression model performance for continuous outcomes was evaluated using the median 184 

absolute error (MAE). Results are not reported for measurements with fewer than 10 available 185 

observations (e.g., strain from external echos) due to insufficient sample size. Where comparable 186 

endpoints existed, performance was benchmarked against the PanEcho framework. 187 

For binary prediction tasks, discriminatory performance was evaluated using the area 188 

under the receiver operating characteristic curve (AUROC) and the area under the precision-189 

recall curve. Results with less than 10 positive cases were not reported. To facilitate clinical 190 

interpretation, sensitivity, specificity, positive and negative likelihood ratios, positive and 191 

negative predictive values, and lift were calculated. 192 

Operating thresholds for binary outcomes were selected based on the maximum Youden 193 

index, determined from the validation dataset and applied consistently across test cohorts. Unless 194 

otherwise specified, larger metric values reflect superior model performance. Statistical 195 

uncertainty was estimated via nonparametric bootstrapping with 1,000 resamples, and 196 

corresponding confidence intervals were reported for all primary performance measures. 197 
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Subgroup Analysis 198 

Subgroup analyses were performed on the test cohorts stratified by age groupings31 of age < 1 199 

(infant), 1 ≤ age < 3, 3 ≤ age < 8, 8 ≤ age < 12, 12 ≤ age ≤ 18 years, and age > 18 years. Model 200 

discrimination within each age subgroup was assessed using AUROC. In addition, performance 201 

was assessed with subgroups of individual CHD lesions, as well as composites of critical and 202 

non-critical CHD (for definitions, see Supplementary Materials). Labels for CHD were generated 203 

using Fyler codes from the first BCH echo report per patient.  204 

Performance was additionally evaluated in a cardiomyopathy subgroup, inclusive of 205 

dilated, hypertrophic, restrictive, arrhythmogenic, non-compaction, metabolic/mitochondrial, and 206 

unspecified cardiomyopathies. To account for the possibility that cardiomyopathy may not have 207 

been detected on the initial echo, patients were considered to have cardiomyopathy if they had a 208 

corresponding code on any echo in their record. 209 

Model Adjudication 210 

To compare model versus human error, adjudication was performed. Four blinded sonographers 211 

remeasured 50 echo studies with discrepant LVEF measurements (MAE >50th percentile), and 50 212 

echo studies with discrepant aortic root measurements (MAE >50th percentile). The latter was 213 

selected to focus on a valve measurement that carries clinical significance in the aortopathy 214 

population. Adjudicators were blinded to patient names, echo reports, model predictions, and to 215 

each other’s assessments.  216 

Post-hoc analysis including calculating the human MAE (derived via leave-one-human-217 

out methodology) and the EchoFocus-Measure MAE (derived using the median of blinded 218 

sonographer measurements as the ground truth). In addition, to assess agreement, the human-219 
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human (i.e., all four blinded sonographers) and the human-AI (i.e., all four blinded sonographers 220 

and AI) intraclass correlation coefficients were calculated.  221 

Model Interpretability 222 

To enhance interpretability of model outputs, we conducted post-hoc attribution analyses using 223 

integrated gradients32 for predictions of LVEF and mitral regurgitation. For each task, we 224 

selected 25 echo studies with the smallest absolute prediction error (i.e., lowest MAE for LVEF; 225 

lowest error among studies positive for mitral regurgitation). Within each selected study, 226 

attribution scores were calculated to characterize the influence of individual video clips on the 227 

corresponding model prediction. Clips were ordered by attribution magnitude, and the ten most 228 

influential videos per study were retained for subsequent qualitative assessment. 229 

The selected clips were then reviewed independently by a pediatric cardiology fellow, 230 

who identified and recorded the echo views represented among the model-prioritized inputs. 231 

Data Availability and Software 232 

To support transparency and reproducibility, the EchoFocus-Measure model and associated 233 

source code are publicly accessible for non-commercial, academic research use at 234 

https://echofocus.org. Access to echo data derived from BCH is governed by institutional 235 

policies; requests will be evaluated to determine feasibility based on privacy, intellectual 236 

property, and regulatory considerations. When permitted, deidentified data and related materials 237 

will be shared under an institutional material transfer agreement for non-commercial, research 238 

purposes only. This study was conducted with approval from the BCH Institutional Review 239 

Board.   240 
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RESULTS 241 

Patient Population Characteristics 242 

There were 234,807 transthoracic echos at Boston Children’s Hospital meeting inclusion 243 

criteria. After excluding 11,239 echos with less than 10 DICOM files per study and 3,037 echos 244 

from overlapping patients in the training and external cohorts, there were 220,531 studies 245 

remaining, forming the main cohort (Figure 1A). Of those, 217,435 echos (64,403 patients) were 246 

from the internal cohort, and 3,096 echos (2,506 patients) were from the external cohort. The 247 

external international patients resided in 37 countries spanning five continents: North America, 248 

South America, Europe, Asia, and Africa. 249 

As shown in Table 1, there were several differences between the internal (n=60,269 250 

patients for model development; n=15,068 for testing) and external (n=2,506) cohorts. In 251 

general, the external cohort was more complex with higher rates critical CHD (21.7% versus 4.0-252 

4.2%), non-critical CHD (33.0% versus 16.9-17.2%), and any CHD (43.8% versus 18.2-18.5%). 253 

Prevalence for each individual lesion is shown in Table 1. Cardiomyopathy was present in 1.8%, 254 

1.5%, and 1.6% of patients in the internal development, internal test, and external test cohorts, 255 

respectively.  256 

As shown in Table 2, there were accompanying differences in echo characteristics 257 

between the internal (n=174,042 echos for model development; n=43,393 echos for testing) and 258 

external patients (n=3,096 echos). The internal model development and testing cohorts had 9.1 259 

million and 2.3 million echo videos respectively, totaling >11 million. There were 47 [IQR, 36-260 

66] videos per study for the internal model development and test cohort. The external cohort had 261 

289,613 videos, with 44 [IQR 29-62] videos per study. The external cohort was younger (median 262 

age at echo 3.5 [IQR 0.6-11.1] years) compared to the internal development (median age at echo 263 
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8.5 [IQR 1.1-16.6] years) and test (median age at echo 8.5 [1.2-16.5] years) cohorts. 264 

Accordingly, the external cohort had smaller raw LV end-diastolic volumes, LV masses, LV 265 

end-systolic volumes, valvar measurements, and atrial volumes.  266 

The higher rates of external CHD were accompanied by higher rates of qualitative 267 

outcomes such as biventricular outflow tract obstruction, valvar regurgitation, aortic stenosis 268 

(1.2% versus 0.7-1.0%), and LV hypertrophy (2.0% versus 1.4-1.5%). The internal cohort had 269 

higher rates of LV systolic dysfunction and right ventricular hypertension (Table 2). 270 

EchoFocus-Measure Regression Performance 271 

Regression model performance of EchoFocus-Measure for 18 individual measurements during 272 

internal and external testing is shown in Figure 2. Internally, MAE was: 0.09 cm (aortic valve 273 

diameter), 0.13 cm (aortic root diameter), 2.8% (LVEF), 5.8 mL (LV end-diastolic volume), 0.05 274 

cm (LV posterior wall thickness), 0.05 cm (septal wall thickness), 5.1 g (LV mass), 2.5 mL (2LV 275 

end-systolic volume), 0.14 cm (mitral valve diameter), 0.17 cm (main pulmonary artery 276 

diameter), 0.14 cm (pulmonary valve diameter), 0.18 cm (tricuspid valve diameter), 4.8 mL (left 277 

atrial volume), 5.5 mL (right atrial volume), 2.6% (right ventricular longitudinal strain), 2.6% 278 

(LV circumferential strain), 1.9% (LV longitudinal strain), and 3.2% (right ventricular free wall 279 

strain). During external validation, there was variable increase in MAE among metrics; for 280 

example, external LVEF MAE increased to 3.8%, LV end-diastolic volume MAE increased to 281 

13.8 mL, and aortic root diameter MAE increased to 0.27 cm.  282 

During benchmarking, EchoFocus-Measure outperformed PanEcho in predicting LVEF 283 

in the overall internal (MAE 2.8% versus 7.3%) and external (MAE 3.8% versus 7.9%) cohorts 284 

and in specific age and lesion subgroups (Table 3). EchoFocus-Measure performance remained 285 

similar for ages >3, followed by a slight drop for ages 1-3 (internal MAE 3.0%, external MAE 286 
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3.8%) and age <1 (internal MAE 3.2%, external MAE 4.4%). PanEcho performance started to 287 

drop for ages <8 years old.  288 

EchoFocus-Measure LVEF performance was relatively stable across all CHD lesions 289 

(internal MAE <5% except hypoplastic left heart syndrome). Similar trends were noted 290 

externally, with a maximal MAE of 5.8%. Interestingly, for L-loop transposition of the great 291 

arteries, MAE was 4.0% internally for EchoFocus-Measure, compared to 13.1% for PanEcho.  292 

Among non-critical CHD studies, EchoFocus-Measure exhibited a LVEF MAE of 3.0% 293 

internally and 4.3% externally. LVEF MAE increased slightly for critical CHD (3.3% internal, 294 

5.5% external) and decreased for patients without CHD (2.6% internal, 3.3% external). In the 295 

cardiomyopathy subgroup, LVEF MAE was 3.2% internally and 5.1% externally. PanEcho 296 

showed similar trends but with higher errors; for example, LVEF MAE for critical CHD was 297 

8.7% both internally and externally. As illustrated in Figure S1, EchoFocus-Measure 298 

outperformed PanEcho for six additional measurements: LV end-diastolic volume, LV end-299 

systolic volume, septal wall thickness, LV posterior wall thickness, left atrial volume, and aortic 300 

root diameter.  301 

Sonographer Adjudication 302 

Discrepant internal test cases (>50th percentile MAE) for LVEF and aortic root diameter were 303 

reviewed by four experienced blinded sonographers.  304 

As shown in Figure 3A, for LVEF EchoFocus-Measure clustered with the original 305 

measurement and sonographers 1, 2, 4, whereas sonographer 3 did not. When compared to 306 

median sonographer LVEF measurements, the adjudicated EchoFocus-Measure MAE of 2.4% 307 

was within the sonographer MAE of 3.7%. The inter-sonographer intraclass correlation 308 
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coefficient was 0.47; when adding EchoFocus-Measure to the pool of sonographer 309 

measurements, the intraclass correlation coefficient was unchanged (0.47).  310 

 As shown in Figure 3B, EchoFocus-Measure clustered alone when estimating aortic root 311 

diameter. When compared to median sonographer aortic root diameter measurements, the 312 

adjudicated EchoFocus-Measure MAE of 0.53 cm was outside the sonographer MAE of 0.05 cm. 313 

The near perfect inter-sonographer intraclass correlation coefficient was 0.96; when adding 314 

EchoFocus-Measure to the pool of measurements, the intraclass correlation coefficient dropped 315 

to 0.91. 316 

EchoFocus-Measure Qualitative Outcome Performance 317 

EchoFocus-Measure performance to detect 10 qualitative outcomes is shown in Figure 3. 318 

Internally, performance ranged from AUROC 0.88 (at least moderate RV hypertension, LV 319 

hypertrophy, and RV outflow tract obstruction) to 0.95 (at least moderate aortic stenosis). During 320 

external testing, there was a modest drop in performance, with AUROC ranging from 0.73 321 

(pulmonary and tricuspid regurgitation) to 0.86 (aortic stenosis). Individual performance metrics 322 

for internal and external testing are shown in Tables S1 and S2. 323 

 For two valvar measurements of interest (aortic and mitral regurgitation), subgroup 324 

analysis was performed. As shown in Table S3, internal performance was highest for ages 3-18. 325 

No clear trend was apparent for external studies.  326 

Model Explainability 327 

In model explainability analyses (Figure 5), EchoFocus-Measure assigned the highest attention 328 

for LVEF assessment to the apical four-chamber, parasternal long-axis, and parasternal short-329 

axis views. For mitral regurgitation, the model similarly prioritized these same views, with Color 330 

Doppler clips being preferentially selected in most cases.  331 
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DISCUSSION 332 

EchoFocus-Measure is the first study-level, multi-task AI echo platform designed for automated 333 

evaluation of a broad set of common pediatric echo measurements, encompassing 18 quantitative 334 

and 10 qualitative parameters. The method extends the PanEcho framework with a clinically 335 

inspired study-level attention module that prioritizes diagnostically informative views in a 336 

manner analogous to expert cardiac imagers. By leveraging the largest pediatric and CHD echo 337 

dataset reported to date (>11 million videos), we address longstanding limitations related to 338 

sample size and age- and lesion-level heterogeneity that have constrained pediatric AI-echo 339 

development. We demonstrate that EchoFocus-Measure achieves expert-level performance for 340 

key functional measurements (including LVEF) across age, CHD lesion, and cardiomyopathy 341 

subgroups. Qualitative measurements showed strong internal performance with a modest decline 342 

on external testing. Notably, external performance herein was comparable to the internally 343 

reported performance of prior pediatric AI-echo studies focused on individual measurements, 344 

including mitral regurgitation (AUROC 0.75-0.84)23 and LVEF (MAE 3.7%).12 Finally, model 345 

explainability analyses suggest EchoFocus-Measure prioritizes clinically expected views for 346 

LVEF and mitral regurgitation prediction, lending trust to clinicians. Collectively, these findings 347 

suggest that EchoFocus-Measure is a step towards broadly delivering quality pediatric echo 348 

assessments across diverse clinical settings, with the potential to expand access to care, 349 

accelerate patient triage, standardize measurements, and streamline sonographer workflows. 350 

Clinical Need for Automated Echo Measurements 351 

Pediatric heart failure is an underrecognized and growing global health challenge.33-35 In 2021, 352 

an estimated 6 million children were affected worldwide, a number forecasted to sharply rise by 353 

2050.33-35 These figures likely underestimate the true burden because pediatric heart failure is 354 
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systematically underdiagnosed in LMICs.33 Furthermore, the leading causes of pediatric heart 355 

failure33—CHD (48%), cardiomyopathy (20%), and rheumatic heart disease (11%)—are also 356 

major drivers of heart failure in adulthood; for example, the rapidly growing adult CHD 357 

population is at nearly 10-fold greater risk of heart failure,36 which represents the leading cause 358 

of mortality in this population.37 Rheumatic heart disease alone, which disproportionately affects 359 

children and young adults in resource-limited settings, impacts an estimated 40 million 360 

individuals globally and accounts for nearly 300,000 deaths annually.38 361 

 Across these conditions, delayed recognition of ventricular dysfunction and valvular 362 

disease leads to worse clinical trajectories for children and adults who might otherwise benefit 363 

from early referral, timely intervention, and guideline-directed therapy. Scalable and accessible 364 

technologies are urgently needed to facilitate earlier disease detection and enable clinically 365 

actionable decision-making across diverse care environments. This need is particularly acute in 366 

LMICs, where shortages of clinicians with specialized expertise in pediatric cardiology are 367 

profound,9,10,39 and where the burden of diseases such as rheumatic heart disease remains high. 368 

Even in well-resourced healthcare systems, substantial inter-operator and inter-institutional 369 

variability in echo measurements persists, underscoring the ongoing challenge and need for 370 

achieving standardized, reproducible quantitative assessment.12,13 371 

Clinical Implications of EchoFocus-Measure 372 

With this context, EchoFocus-Measure was developed to benefit both low-resource and high-373 

resource settings. In resource-limited settings, EchoFocus-Measure may support triage by 374 

identifying patients with ventricular dysfunction or clinically significant left-sided valvar 375 

disease, including patterns suggestive of rheumatic heart disease or congenital valvulopathies. 376 

LVEF error in external cohorts (MAE 3.8%) was comparable to human variability (MAE 3.7%), 377 
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supporting the use of automated LVEF assessment for identifying patients at risk of systolic 378 

dysfunction. In addition, external left-sided valvar abnormality AUROCs of 0.80-0.86 and 379 

external positive predictive values of approximately 25% for mitral regurgitation suggest that the 380 

model can enrich for higher-risk patients who may benefit from earlier referral or further expert 381 

evaluation (Table S2).  382 

Even in well-resourced healthcare systems, automated echo measurements offer 383 

important benefits. Substantial inter-operator and inter-institutional variability in measurements 384 

can adversely affect consistency and quality of care.12,13 Moreover, routine quantitative 385 

measurements consume significant clinician/sonographer time and could be reliably automated, 386 

allowing expert effort to be redirected toward higher-value interpretive and clinical decision-387 

making tasks. EchoFocus-Measure achieves sonographer-level accuracy for LVEF measurement 388 

and demonstrates stable performance across a broad range of ages and CHD lesion types, 389 

supporting its use for automated measurements and quality assurance to streamline sonographer 390 

workflow. In the adult echo literature, a comparable AI-based system has been shown to be non-391 

inferior to sonographers for LVEF assessment in a blinded, randomized trial, while also reducing 392 

interpretation time for both sonographers and cardiologists.40 EchoFocus-Measure could fill a 393 

similar role in pediatric practice, although prospective evaluation will be required to rigorously 394 

assess its impact on workflow and clinical decision-making. 395 

   396 

Importance of Real-World Deployment 397 

A key finding of this study was the decline in model performance observed in a large, 398 

geographically and demographically distinct external cohort, reflecting conditions expected 399 

during deployment across diverse real-world care environments. This attenuation in performance 400 
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is not unexpected given the greater clinical complexity, younger patient age distribution, and 401 

substantial heterogeneity in echo acquisition and processing across institutions. Variability in 402 

vendor-specific image pipelines, operator-dependent acquisition techniques, image quality, and 403 

local imaging protocols introduces domain shifts that can meaningfully affect model 404 

performance when models are applied beyond their development settings. 405 

These results highlight the importance of diverse cohort training, rigorous external 406 

validation, and ongoing performance monitoring as AI-based echo tools are deployed across 407 

heterogeneous health systems globally. Strategies such as retraining with more diverse data, 408 

domain-aware calibration, and continual evaluation across regions and care contexts will be 409 

critical to ensure reliable performance as such tools are extended to settings with differing 410 

resources, workflows, and patient populations. 411 

Limitations and Future Directions 412 

Several limitations warrant consideration. First, although model performance for LVEF was 413 

within the range of human variability, accuracy for other quantitative measurements was more 414 

variable, indicating opportunities for further improvement. Future work will focus on enhancing 415 

performance and generalizability through multiple complementary strategies, including 416 

exploration of other backbone architectures (such as EchoPrime)19 or learning approaches (e.g., 417 

adversarial learning41), development of pediatric cardiology-specific foundation models to learn 418 

more robust and anatomically informed representations, and incorporation of multi-institutional 419 

or federated learning approaches to better capture heterogeneity across both large referral centers 420 

and smaller care settings. Second, despite broad geographic diversity in the external validation 421 

cohort, certain regions with substantial unmet clinical need—notably sub-Saharan Africa—were 422 

not represented. As a result, generalizability to settings with the greatest burden of pediatric heart 423 
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disease and the most constrained access to specialty care cannot be assumed and will require 424 

targeted evaluation. Third, the current models rely on transthoracic echos acquired by trained 425 

sonographers. Extension to low-resource or point-of-care ultrasound environments will 426 

necessitate additional validation on portable imaging systems, where image quality and operator 427 

variability may differ substantially. Finally, while post-hoc explainability analyses using 428 

integrated gradients provided insight into model behavior, further work is needed to determine 429 

how such explanations influence clinician trust, interpretability, and decision-making in real-430 

world settings. 431 

 Future directions should therefore prioritize continued model refinement with an 432 

emphasis on robustness to heterogeneous acquisition conditions, prospective multi-site 433 

evaluation across diverse healthcare environments, and formal assessment of clinical utility, 434 

workflow integration, and impact on patient triage and outcomes.  435 

 436 

Conclusions 437 

EchoFocus-Measure demonstrates that large-scale, multi-task AI models can provide accurate, 438 

automated echo measurements in pediatric populations using routine transthoracic echo. The 439 

model outperformed the PanEcho benchmark and achieved external performance comparable to 440 

internally reported results in the existing pediatric AI-echo literature for selected measurements. 441 

At the same time, these findings underscore the critical importance of rigorous external 442 

validation as such tools are extended across heterogeneous care environments. By transparently 443 

characterizing both strengths and limitations, this work establishes a foundation for prospective 444 

evaluation and iterative deployment strategies aimed at enabling equitable, scalable access to 445 

high-quality pediatric cardiac care worldwide. 446 
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TABLES 606 
Table 1: Baseline Characteristics of Internal and External Cohorts 607 

 Internal Development Internal Test External 
Patients 60,269 15,068 2,506 

Sex (Male) 32,162 (53.36%) 8051 (53.43%) 1,391 (55.51%) 
ASD 3,019 (5.01%) 789 (5.24%) 282 (11.25%) 

Anomalous Coronaries 299 (0.50%) 72 (0.48%) 33 (1.32%) 
Bicuspid Aortic Valve 1,213 (2.01%) 286 (1.90%) 123 (4.91%) 

Double Aortic Arch 82 (0.14%) 17 (0.11%) 6 (0.24%) 
DORV 156 (0.26%) 42 (0.28%) 79 (3.15%) 

D-loop TGA 228 (0.38%) 69 (0.46%) 44 (1.76%) 
Ebstein Anomaly 91 (0.15%) 17 (0.11%) 40 (1.60%) 

HLHS 188 (0.31%) 48 (0.32%) 63 (2.51%) 
IAA 36 (0.06%) 13 (0.09%) 8 (0.32%) 

L-loop TGA 65 (0.11%) 15 (0.10%) 48 (1.92%) 
PAPVC 262 (0.43%) 67 (0.44%) 24 (0.96%) 

Patent Ductus Arteriosus 4,649 (7.71%) 1,110 (7.37%) 179 (7.14%) 
Right Aortic Arch 464 (0.77%) 117 (0.78%) 38 (1.52%) 
Tricuspid Atresia 69 (0.11%) 26 (0.17%) 11 (0.44%) 
Truncus arteriosus 48 (0.08%) 13 (0.09%) 15 (0.60%) 

Single Ventricle Disease 313 (0.52%) 87 (0.58%) 93 (3.71%) 
Tetralogy of Fallot 505 (0.84%) 114 (0.76%) 56 (2.23%) 

AVCD 414 (0.69%) 101 (0.67%) 146 (5.83%) 
VSD 3,204 (5.32%) 767 (5.09%) 293 (11.69%) 

Coarctation of the Aorta 830 (1.38%) 179 (1.19%) 82 (3.27%) 
Pulmonary Atresia 255 (0.42%) 44 (0.29%) 56 (2.23%) 

TAPVC 59 (0.10%) 25 (0.17%) 17 (0.68%) 
Any Non-Critical CHD 10,346 (17.17%) 2,550 (16.92%) 826 (32.96%) 

Any Critical CHD 2,547 (4.23%) 606 (4.02%) 543 (21.67%) 
Any CHD 11,153 (18.51%) 2,741 (18.19%) 1,097 (43.77%) 

Any Cardiomyopathy 1,059 (1.76%) 227 (1.51%) 39 (1.56%) 
Data presented as median (interquartile range). 608 

Abbreviations: atrial septal defect (ASD); double outlet right ventricle (DORV); transposition 609 
of the great arteries (TGA); hypoplastic left heart syndrome (HLHS); interrupted aortic arch 610 

(IAA); partial anomalous pulmonary venous connection (PAPVC); atrioventricular canal defect 611 
(AVCD); ventricular septal defect (VSD); total anomalous pulmonary venous connection 612 

(TAPVC). 613 
  614 
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Table 2: Echo Characteristics of Internal and External Cohorts 615 
 Internal Development Internal Test External 

Number of Echos 174,042 43,393 3,096 
Videos 9,099,124 2,271,924 289,613 

Videos Per Study 47 (36, 66) 47 (36, 66) 44 (29, 62) 
Age at Echo 8.49 (1.13,16.57) 8.46 (1.18,16.46) 3.52 (0.55,11.11) 

Echos with ≥1 Measure 150,836 37,652 1,915 
Aortic Valve Diameter (cm) 1.66 (1.14,2.00) 1.66 (1.15,1.99) 1.35 (0.91,1.81) 
Aortic Root Diameter (cm) 2.37 (1.70,2.88) 2.38 (1.72,2.88) 2.00 (1.40,2.60) 

LVEF (%) 61 (58,65) 61 (58,65) 62 (57,66) 
LVEDV (mL) 73.20 (27.40,127.00) 75.30 (27.30,127.10) 61.45 (20.22,116.15) 

LV Posterior Wall Thickness (cm) 0.66 (0.52,0.78) 0.66 (0.52,0.78) 0.66 (0.50,0.82) 
Septal Wall Thickness (cm) 0.69 (0.55,0.83) 0.69 (0.55,0.82) 0.71 (0.57,0.93) 

LV Mass (g) 59.40 (23.50,105.70) 60.90 (23.50,105.90) 49.40 (19.45,98.20) 
LVESV (mL) 27.40 (10.40,48.80) 28.10 (10.32,48.80) 22.80 (7.60,43.75) 

Mitral Valve Diameter (cm) 2.09 (1.29,2.61) 2.10 (1.28,2.62) 1.77 (1.26,2.42) 
MPA Diameter (cm) 1.85 (1.10,2.37) 1.87 (1.12,2.39) 1.50 (1.02,2.16) 

Pulmonary Valve Diameter (cm) 1.67 (0.91,2.36) 1.63 (0.92,2.35) 1.22 (0.91,1.81) 
Tricuspid Valve Diameter 2.20 (1.51,2.70) 2.20 (1.51,2.70) 2.00 (1.40,2.59) 
Left Atrial Volume (mL) 37.60 (23.80,53.50) 37.80 (23.80,53.90) 28.90 (14.70,42.90) 

Right Atrial Volume (mL) 27.90 (13.60,48.00) 29.90 (13.60,49.00) 24.60 (17.60,43.40) 
RV Longitudinal Strain (%) -20.50 (-24.00,-16.50) -20.50 (-24.10,-16.70) — 

LV Circumferential Strain (%) -28.90 (-32.10,-25.20) -29.00 (-32.30,-25.20) — 
LV Longitudinal Strain (%) -20.80 (-23.20,-18.10) -20.80 (-23.20,-18.10) — 

RV Free Wall Strain (%) -22.50 (-27.50,-17.90) -22.80 (-27.60,-18.00) — 
LVOTO 1,666 (0.96%) 337 (0.78%) 89 (2.87%) 

Aortic Regurgitation 3,066 (1.76%) 816 (1.88%) 135 (4.36%) 
Aortic Stenosis 1,707 (0.98%) 306 (0.71%) 37 (1.20%) 

Mitral Regurgitation 5,395 (3.10%) 1,368 (3.15%) 227 (7.33%) 
RV Hypertension 17,195 (9.88%) 4,300 (9.91%) 256 (8.27%) 

Tricuspid Regurgitation 9,215 (5.29%) 2,129 (4.91%) 220 (7.11%) 
LV Systolic Dysfunction 7,491 (4.30%) 1,831 (4.22%) 58 (1.87%) 
Pulmonary Regurgitation 5,339 (3.07%) 1,382 (3.18%) 105 (3.39%) 

LV Hypertrophy 2,614 (1.50%) 608 (1.40%) 62 (2.00%) 
RVOTO 5,065 (2.91%) 1,242 (2.86%) 172 (5.56%) 

Data presented as median (interquartile range). 616 
Abbreviations: left ventricular end-diastolic volume (LVEDV); left ventricular end-systolic 617 

volume (LVESV); main pulmonary artery (MPA); right ventricle (RV); LV outflow tract 618 
obstruction (LVOTO); RV outflow tract obstruction (RVOTO). 619 

  620 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 9, 2026. ; https://doi.org/10.64898/2026.02.06.26345782doi: medRxiv preprint 

https://doi.org/10.64898/2026.02.06.26345782
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32 

Table 3: Benchmarking EchoFocus-Measure to PanEcho 621 
 Internal External 

 
EchoFocus-

Measure PanEcho 
EchoFocus-

Measure PanEcho 
Overall Cohort 2.77 (1.32,4.80) 7.30 (4.04,10.97) 3.81 (1.77,6.68) 7.86 (3.95,12.34) 

Age Subgroups (years)     
<1 3.18 (1.50,5.60) 7.54 (4.08,11.52) 4.43 (2.01,7.70) 8.20 (4.15,12.59) 
1-3 2.96 (1.35,5.06) 8.43 (4.70,12.16) 3.81 (2.04,6.82) 9.16 (4.42,14.32) 
3-8 2.60 (1.25,4.50) 8.08 (5.05,11.40) 3.96 (2.08,6.34) 8.51 (4.63,12.66) 
8-12 2.73 (1.32,4.58) 7.35 (4.13,10.99) 3.41 (1.66,6.55) 7.67 (3.80,12.30) 
12-18 2.57 (1.23,4.36) 6.39 (3.39,9.84) 3.29 (1.52,5.19) 6.57 (2.89,11.01) 
≥18 2.75 (1.33,4.76) 7.04 (3.77,10.63) 3.38 (1.50,7.71) 5.61 (3.19,10.55) 

     
Lesion Subgroups     

AP window 2.55 (0.77,4.93) 11.51 (10.11,14.10) — — 
ASD 3.14 (1.48,5.59) 8.18 (4.69,12.34) 4.62 (2.07,6.78) 8.49 (5.39,12.94) 

Anomalous Coronaries 2.75 (1.48,4.44) 6.30 (2.97,10.02) — — 
Bicuspid Aortic Valve 3.04 (1.41,5.40) 8.13 (4.86,12.29) 5.23 (2.38,7.73) 7.93 (3.36,12.96) 

Cor Triatriatum 3.10 (1.71,5.69) 11.73 (8.92,16.34) — — 
Double Aortic Arch 1.78 (0.65,3.08) 7.98 (5.18,8.84) — — 

DORV 4.17 (2.07,8.04) 9.00 (5.32,12.85) — — 
D-loop TGA 2.36 (1.06,4.13) 9.06 (6.16,11.45) — — 

Ebstein Anomaly 3.78 (1.63,6.92) 8.87 (3.54,11.66) — — 
HLHS 5.76 (2.81,8.25) 12.98 (7.12,15.57) — — 

Interrupted Aortic Arch 3.46 (1.32,5.63) 10.63 (6.41,14.32) — — 
L-loop TGA 3.95 (1.30,7.19) 13.12 (7.03,15.84) — — 

PAPVC 3.00 (1.43,4.78) 9.56 (5.90,13.53) — — 
PDA 3.13 (1.49,5.63) 8.31 (4.66,12.30) 5.29 (2.52,8.42) 8.16 (4.88,13.39) 

Right Aortic Arch 3.04 (1.52,5.26) 7.67 (4.60,11.52) — — 
Tricuspid atresia 3.18 (1.97,5.84) 6.74 (3.62,10.32) — — 

Truncus Arteriosus 2.46 (1.58,4.51) 7.63 (5.16,10.57) — — 
Any SV Disease 4.84 (2.50,8.07) 9.94 (5.55,14.89) — — 

Tetralogy of Fallot 3.08 (1.50,5.35) 9.08 (5.68,12.92) — — 
AVCD 3.42 (1.65,6.21) 8.03 (4.48,12.02) 4.77 (1.93,8.77) 9.41 (6.41,15.60) 
VSD 3.11 (1.43,5.44) 7.89 (4.48,11.61) 3.89 (1.67,6.71) 7.93 (4.23,11.31) 

Coarctation of the Aorta 3.48 (1.53,6.38) 8.70 (4.71,12.82) 5.77 (3.49,8.50) 8.06 (5.02,11.96) 
Pulmonary Atresia 3.26 (1.50,6.35) 8.34 (5.21,12.41) — — 

TAPVC 3.20 (1.83,4.21) 5.16 (1.02,9.00) — — 
Critical Aortic Stenosis 3.33 (2.02,6.80) 12.23 (8.03,15.04) — — 

Critical Pulmonary Stenosis 2.24 (1.33,6.52) 5.63 (3.29,9.34) — — 
Any Non-Critical CHD 2.98 (1.42,5.32) 8.02 (4.60,11.90) 4.29 (1.99,7.27) 7.76 (4.36,12.07) 

Any Critical CHD 3.32 (1.55,6.08) 8.72 (5.14,12.76) 5.48 (2.46,8.87) 8.69 (4.83,13.26) 
Any CHD 2.98 (1.41,5.31) 8.07 (4.66,11.93) 4.36 (1.96,7.35) 7.89 (4.38,12.30) 
No CHD 2.60 (1.25,4.39) 6.73 (3.63,10.05) 3.33 (1.59,6.10) 7.81 (3.43,12.18) 

Any Cardiomyopathy 3.23 (1.62,5.64) 8.28 (4.35,12.83) 5.07 (2.00,8.09) 10.51 (4.72,15.75) 
Abbreviations: aortopulmonary (AP); atrial septal defect (ASD); double outlet right ventricle 622 
(DORV); transposition of the great arteries (TGA); hypoplastic left heart syndrome (HLHS); 623 
partial anomalous pulmonary venous connection (PAPVC); patent ductus arteriosus (PDA); 624 
single ventricle (SV); atrioventricular canal defect (AVCD); ventricular septal defect (VSD); 625 
total anomalous pulmonary venous connection (TAPVC); congenital heart disease (CHD).  626 
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FIGURES 627 
 628 

 629 
Figure 1: Study Design and Model Architecture. (A) Study design schematic with STROBE 630 
diagram showing initial patient selection and filtering to form the main cohort. Pins of origin 631 

countries for external patients inset. (B) EchoFocus-Measure architecture schematic and outcome 632 
targets. 633 

Abbreviations: transthoracic echo (TTE).  634 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 9, 2026. ; https://doi.org/10.64898/2026.02.06.26345782doi: medRxiv preprint 

https://doi.org/10.64898/2026.02.06.26345782
http://creativecommons.org/licenses/by-nc-nd/4.0/


 34 

 635 
Figure 2: EchoFocus-Measure Regression Task Performance. Internal (blue) and external 636 
(orange) performance of EchoFocus-Measure to predict 18 measurements in the pediatric and 637 

CHD population. MAE values inset. Dotted line represents the identity line.  638 
Abbreviations: left ventricular ejection fraction (LVEF); LV end-diastolic volume (LVEDV); 639 

LV end-systolic volume (LVESV); main pulmonary artery (MPA); left atrium (LA); right atrium 640 
(RA); right ventricle (RV).  641 
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 642 
Figure 3. Sonographer Adjudication of Discrepant Cases. Expert adjudication was performed 643 
on 50 discrepant (A) LVEF cases and (B) 50 discrepant aortic root diameter cases. Heatmap with 644 
hierarchical clustering displaying measurements of individual sonographers versus EchoFocus-645 

Measure versus the original measurement.  646 
  647 
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 648 
Figure 4: EchoFocus-Measure Performance for Qualitative Outcomes. Performance of the 649 
qualitative EchoFocus-Measure model to predict 10 qualitative measures during internal (blue) 650 

and external (orange) testing. Dotted line represents chance. 95% confidence intervals are shown 651 
using bootstrapping.  652 

Abbreviations: Left ventricular outflow tract obstruction (LVOTO); right ventricle (RV); RV 653 
outflow tract obstruction (RVOTO).  654 
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 655 
Figure 5: Model Explainability Analysis. Radar plots of top views selected during 656 

explainability analysis for (A) LVEF and (B) mitral regurgitation. 657 
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