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ABSTRACT

Background: Echocardiography (echo) is a cornerstone of pediatric cardiology, yet access to
expert interpreters is limited worldwide, particularly in low-resource and rural settings. Artificial
intelligence (Al) offers a mechanism to broadly deliver expert-level precision and standardize
measurements, yet Al for comprehensive automated measurements in pediatric and congenital
heart disease (CHD) echo remains underdeveloped.

Methods: We created EchoFocus-Measure, an Al platform that automatically extracts 18
quantitative parameters and 10 qualitative assessments from full echo studies. The method
extends a multi-task, view-agnostic architecture (PanEcho) with a study-level transformer to
prioritize diagnostically informative views. Training (80%) and internal testing (20%) were
performed on echos from Boston Children’s Hospital (BCH), with external evaluation on outside
referral studies. Left ventricular ejection fraction (LVEF) was the primary endpoint.

Results: The internal cohort included 11.4 million videos from 217,435 echos (60,269 patients;
median age 8.5 years; median LVEF 61%), and external validation encompassed 289,613 videos
from 3,096 echos (2,506 patients; median age 3.5 years; median LVEF 62%). For LVEF,
EchoFocus-Measure exhibited a median absolute error (MAE) of 2.8% internally and 3.8%
externally, maintaining accuracy across infants (MAE 3.2%) and complex CHD lesions (e.g.,
MAE 4.0% for L-loop transposition of the great arteries). EchoFocus-Measure improved upon
the PanEcho benchmark (MAE 7.5% for infants; 13.1% for L-loop transposition). Discrepant
case (>50" percentile error) adjudication of LVEF demonstrated that model errors (MAE 2.4%)
were within human variability (MAE 3.7%). For qualitative measures, EchoFocus-Measure
performed well internally (AUROC 0.88-0.95) and modestly externally (AUROC 0.73-0.86).

Explainability analyses highlighted model focus on clinically appropriate echo views for LVEF
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estimation (apical four-chamber, parasternal short/long) and mitral regurgitation assessment
(apical four-chamber color Doppler, parasternal short/long color Doppler).

Conclusions: EchoFocus-Measure delivers rapid and reliable automated echo measurements
across ages and lesions within diverse internal and real-world external cohorts, serving as a step
toward scalable, global access to high-quality pediatric cardiovascular care.

Keywords: Artificial Intelligence; Pediatric Cardiology; Echocardiography; Congenital Heart

Disease


https://doi.org/10.64898/2026.02.06.26345782
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.64898/2026.02.06.26345782; this version posted February 9, 2026. The copyright holder for this preprint

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

INTRODUCTION

Transthoracic echocardiography (echo) is a noninvasive, portable imaging modality that forms
the foundation of pediatric cardiology worldwide by enabling diagnosis and longitudinal
assessment of pediatric and congenital heart disease (CHD).! Accurate measurements of
ventricular function,? chamber dimensions,* and valvar structure and performance*° are essential
for timely diagnosis, monitoring disease progression, and guiding clinical decision-making.
Reliable echo assessment requires specialized training that remains maldistributed globally. In
many rural regions and low- and middle-income countries (LMICs), limited access to expert

interpretation constrains the clinical utility of echo,®1°

contributing to delayed disease
recognition and widening disparities in pediatric cardiovascular outcomes.’!! Even in high-
resource healthcare settings, substantial inter-operator and inter-institutional variability
underscores the need for standardized, reproducible echo measurements to ensure consistent
care. %13

Recent advances in artificial intelligence (Al) have begun to reshape echo, particularly in
adult populations where Al-based systems have progressed from automating individual
measurements to supporting comprehensive, study-level interpretation.'*!® However, this
progress lags in pediatric and CHD echo due to the unique challenges of anatomic variation and
evolving physiologic states from infancy to adulthood. Consequently, prior efforts have largely
focused on narrowly scoped tasks (e.g., recognizing standard imaging views, extracting
individual measurements, or identifying specific CHD lesions),!*!3-2-23 Jeaving an unmet need
for broad, scalable, study-level measurement tools to support routine pediatric cardiac care.

To address this gap, we developed EchoFocus-Measure, a multi-task, study-level Al-echo

model designed to generate 18 quantitative and 10 qualitative measurements. We evaluated real-
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81  world performance and generalizability using echos from 37 countries across five continents,
82  with the goal of enabling scalable automated measurements for global standardization and

83  expanding access to high-quality pediatric echo assessment worldwide.
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METHODS

This study is reported in accordance with the TRIPOD+AI 2024 guidelines.**

Patient Population and Patient Assignment

Echo data were retrospectively obtained at Boston Children’s Hospital (BCH) from July 2015
through July 2025. All available transthoracic echos acquired during this period were screened
for inclusion. Studies failing predefined quality control standards (described in “Data Retrieval,
Pre-Processing, and Quality Control”) were excluded, yielding the main study cohort.

Echos were grouped based on acquisition site into internal studies (performed at BCH or
affiliated outpatient centers) and external referral studies. The internal dataset was further
subdivided by randomly allocating patients 80:20 to model development and testing sets,
respectively. There was no patient overlap between development and test cohorts.

Definition of Outcomes

For both internal and external cohorts, the ground truth outcome label was derived from the final
clinical report generated by a BCH attending pediatric cardiologist with subspecialty training in
noninvasive pediatric cardiac imaging. This approach holds the interpretation standard constant,
allowing the external validation to primarily assess model robustness to image acquisition
heterogeneity arising from different scanners, ultrasound systems, and imaging protocols.

The outcomes of interest were 18 quantitative measures and 10 qualitative measures. The
18 quantitative measures included the following: aortic valve diameter, aortic root diameter, left
ventricular ejection fraction (LVEF), LV end-diastolic volume, LV posterior wall thickness,
septal wall thickness, LV mass, LV end-systolic volume, mitral valve diameter, main pulmonary
artery diameter, pulmonary valve diameter, tricuspid valve diameter, left atrial volume, right

atrial volume, right ventricular longitudinal strain, LV circumferential strain, LV longitudinal
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strain, and RV free wall strain. All internal and external measurements were stored in a
structured database within a custom hospital software. All measurements were transformed into
unitless variables via z-score normalization or Box-Cox transformation. Model outcomes were
evaluated using raw measurement values. The primary outcome was LVEF, which institutionally
is measured via the bullet method (5/6 area-length method).?

The 10 qualitative measures were defined as at least moderate severity of the following:
left ventricular outflow tract obstruction, aortic regurgitation, aortic stenosis, mitral regurgitation,
right ventricular hypertension, tricuspid regurgitation, LV systolic dysfunction, pulmonary
regurgitation, LV hypertrophy, and right ventricular outflow tract obstruction. To create these
labels, we leveraged our institutional Fyler coding system—a detailed, decades-established
anatomic classification system used at BCH and specifically designed for pediatric and CHD.?¢
For every echo, expert interpreting cardiac imagers assign Fyler codes that capture qualitative
severity grading of ventricular and valvar function, in addition to structural cardiac lesions with
high anatomic granularity. Each of the qualitative labels were marked as negative if they were
qualified as less than moderate severity. Due to the natural history of CHD (e.g., tetralogy of
Fallot) and institutional practice of Fyler code use, right ventricular outflow tract obstruction was
grouped as a composite of pulmonary stenosis, right ventricle-to-pulmonary artery conduit
stenosis, or right ventricular outflow tract obstruction.

Data Retrieval, Pre-Processing, and Quality Control

Echo studies were obtained from the BCH picture archiving and communication system. Studies
with fewer than 10 DICOM files were excluded. The remaining studies were then processed
using a standardized pipeline adapted from PanEcho.!* For each study, raw two-dimensional

echo videos were extracted directly from DICOM files. All data underwent thorough
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deidentification prior to analysis. Each frame was binarized to delineate the primary imaging
region, and pixels outside the largest detected contour were concealed. Videos were then cropped
to the central imaging area, resized to 256 x 256 using bicubic interpolation, and further
anonymized by masking peripheral regions that could contain identifying information.!*
EchoFocus-Measure Model Architecture

EchoFocus-Measure is designed to convert a full set of echo video clips from a single study into
a comprehensive set of quantitative or qualitative measurements. The model integrates
information across all videos to emulate the approach of a skilled clinician, who synthesizes
multiple views to generate accurate cardiac assessments. The framework builds on a PanEcho
backbone,!* enhanced with an additional transformer layer to allow the model to focus®’ on the
most informative video clips and capture complex inter-video relationships (Figure 1B).

Each video is first converted into 16 random sets of 16 sequential frames (each called
clips); each frame (image) is processed by a 2D convolutional neural network (ConvNeXt-T,?8
pretrained on ImageNet) to extract rich feature representations. The resulting individual image
embeddings are sequentially organized and passed through a temporal transformer with four
layers and eight attention heads. Positional encodings preserve temporal order, and clip-level
outputs are aggregated via mean pooling to generate a single clip embedding as a 768-
dimensional vector.

EchoFocus-Measure then expands upon the original PanEcho architecture!* and
incorporates an additional transformer that operates across all clip embeddings (number of
videos x 16) to generate a single, study-level embedding. Unlike PanEcho, the transformer
encoder analyzes all video embeddings collectively, enabling the model to identify patterns that

emerge only when multiple views are considered together. The resulting study-level embedding
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is then passed through fully connected layers to produce predictions for measurements of
interest.

Two separate models were trained: a regression model simultaneously predicting 18
quantitative echo measurements, and a binary classification model simultaneously predicting 10
qualitative measurements. For the regression model, echo studies were included if at least one
quantitative measurement was available; missing measurement targets were masked and
excluded from the loss computation.

Model Training Strategy

For model development, echos from the internal development cohort were randomly divided at
the patient level into training and validation subsets using an 80:20 split. The training subset was
used to optimize model parameters, while the validation subset was reserved for model selection
and early stopping. Pretrained PanEcho weights were frozen during training, enabling the
optimization process to focus on the newly introduced study-level transformer encoder and
downstream task-specific prediction layers.

Training was performed using the AdamW optimizer? with a weight decay coefficient of
0.01. A dynamic learning rate schedule was employed, reducing the learning rate in response to
plateaus in validation loss. Training stopped when no improvement in validation performance
was observed for 10 consecutive epochs.

To enhance robustness to real-world echo variability, several regularization strategies

were applied. Dropout?®

was incorporated during training at a rate of 0.2 for weights and 0.5 for
video clips to reduce overfitting and improve tolerance to incomplete or heterogeneous video

inputs. In addition, consistent with prior PanEcho-based approaches,'* data augmentation
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techniques such as random cropping, rotation, and horizontal flipping were applied to mitigate
sensitivity to image acquisition variability and noise.

Hyperparameter optimization was conducted through systematic exploration of key
architectural and training parameters: the number of layers in the study-level transformer encoder
(1, 5, 10, and 20); learning rates ranging from le-4 to le-2; and effective batch sizes between 32
and 128. The final classification model configuration was selected to minimize aggregate
validation loss across all prediction tasks, while the final regression model was chosen to
minimize LVEF validation error.

Model Performance Assessment and Statistical Analysis

Regression model performance for continuous outcomes was evaluated using the median
absolute error (MAE). Results are not reported for measurements with fewer than 10 available
observations (e.g., strain from external echos) due to insufficient sample size. Where comparable
endpoints existed, performance was benchmarked against the PanEcho framework.

For binary prediction tasks, discriminatory performance was evaluated using the area
under the receiver operating characteristic curve (AUROC) and the area under the precision-
recall curve. Results with less than 10 positive cases were not reported. To facilitate clinical
interpretation, sensitivity, specificity, positive and negative likelihood ratios, positive and
negative predictive values, and lift were calculated.

Operating thresholds for binary outcomes were selected based on the maximum Youden
index, determined from the validation dataset and applied consistently across test cohorts. Unless
otherwise specified, larger metric values reflect superior model performance. Statistical
uncertainty was estimated via nonparametric bootstrapping with 1,000 resamples, and

corresponding confidence intervals were reported for all primary performance measures.

10
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Subgroup Analysis

Subgroup analyses were performed on the test cohorts stratified by age groupings®! of age < 1
(infant), 1 <age <3, 3 <age <8, 8§ <age <12, 12 <age < 18 years, and age > 18 years. Model
discrimination within each age subgroup was assessed using AUROC. In addition, performance
was assessed with subgroups of individual CHD lesions, as well as composites of critical and
non-critical CHD (for definitions, see Supplementary Materials). Labels for CHD were generated
using Fyler codes from the first BCH echo report per patient.

Performance was additionally evaluated in a cardiomyopathy subgroup, inclusive of
dilated, hypertrophic, restrictive, arrhythmogenic, non-compaction, metabolic/mitochondrial, and
unspecified cardiomyopathies. To account for the possibility that cardiomyopathy may not have
been detected on the initial echo, patients were considered to have cardiomyopathy if they had a
corresponding code on any echo in their record.

Model Adjudication

To compare model versus human error, adjudication was performed. Four blinded sonographers
remeasured 50 echo studies with discrepant LVEF measurements (MAE >50" percentile), and 50
echo studies with discrepant aortic root measurements (MAE >50" percentile). The latter was
selected to focus on a valve measurement that carries clinical significance in the aortopathy
population. Adjudicators were blinded to patient names, echo reports, model predictions, and to
each other’s assessments.

Post-hoc analysis including calculating the human MAE (derived via leave-one-human-
out methodology) and the EchoFocus-Measure MAE (derived using the median of blinded

sonographer measurements as the ground truth). In addition, to assess agreement, the human-

11
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220  human (i.e., all four blinded sonographers) and the human-AI (i.e., all four blinded sonographers
221  and Al) intraclass correlation coefficients were calculated.

222 Model Interpretability

223 To enhance interpretability of model outputs, we conducted post-hoc attribution analyses using
224  integrated gradients®? for predictions of LVEF and mitral regurgitation. For each task, we

225  selected 25 echo studies with the smallest absolute prediction error (i.e., lowest MAE for LVEF;
226  lowest error among studies positive for mitral regurgitation). Within each selected study,

227  attribution scores were calculated to characterize the influence of individual video clips on the
228  corresponding model prediction. Clips were ordered by attribution magnitude, and the ten most
229  influential videos per study were retained for subsequent qualitative assessment.

230 The selected clips were then reviewed independently by a pediatric cardiology fellow,
231  who identified and recorded the echo views represented among the model-prioritized inputs.
232 Data Availability and Software

233 To support transparency and reproducibility, the EchoFocus-Measure model and associated

234  source code are publicly accessible for non-commercial, academic research use at

235  https://echofocus.org. Access to echo data derived from BCH is governed by institutional

236  policies; requests will be evaluated to determine feasibility based on privacy, intellectual

237  property, and regulatory considerations. When permitted, deidentified data and related materials
238  will be shared under an institutional material transfer agreement for non-commercial, research
239  purposes only. This study was conducted with approval from the BCH Institutional Review

240  Board.

12
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RESULTS
Patient Population Characteristics

There were 234,807 transthoracic echos at Boston Children’s Hospital meeting inclusion
criteria. After excluding 11,239 echos with less than 10 DICOM files per study and 3,037 echos
from overlapping patients in the training and external cohorts, there were 220,531 studies
remaining, forming the main cohort (Figure 1A). Of those, 217,435 echos (64,403 patients) were
from the internal cohort, and 3,096 echos (2,506 patients) were from the external cohort. The
external international patients resided in 37 countries spanning five continents: North America,
South America, Europe, Asia, and Africa.

As shown in Table 1, there were several differences between the internal (n=60,269
patients for model development; n=15,068 for testing) and external (n=2,506) cohorts. In
general, the external cohort was more complex with higher rates critical CHD (21.7% versus 4.0-
4.2%), non-critical CHD (33.0% versus 16.9-17.2%), and any CHD (43.8% versus 18.2-18.5%).
Prevalence for each individual lesion is shown in Table 1. Cardiomyopathy was present in 1.8%,
1.5%, and 1.6% of patients in the internal development, internal test, and external test cohorts,
respectively.

As shown in Table 2, there were accompanying differences in echo characteristics
between the internal (n=174,042 echos for model development; n=43,393 echos for testing) and
external patients (n=3,096 echos). The internal model development and testing cohorts had 9.1
million and 2.3 million echo videos respectively, totaling >11 million. There were 47 [IQR, 36-
66] videos per study for the internal model development and test cohort. The external cohort had
289,613 videos, with 44 [IQR 29-62] videos per study. The external cohort was younger (median

age at echo 3.5 [IQR 0.6-11.1] years) compared to the internal development (median age at echo

13
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8.5 [IQR 1.1-16.6] years) and test (median age at echo 8.5 [1.2-16.5] years) cohorts.
Accordingly, the external cohort had smaller raw LV end-diastolic volumes, LV masses, LV
end-systolic volumes, valvar measurements, and atrial volumes.

The higher rates of external CHD were accompanied by higher rates of qualitative
outcomes such as biventricular outflow tract obstruction, valvar regurgitation, aortic stenosis
(1.2% versus 0.7-1.0%), and LV hypertrophy (2.0% versus 1.4-1.5%). The internal cohort had
higher rates of LV systolic dysfunction and right ventricular hypertension (Table 2).
EchoFocus-Measure Regression Performance
Regression model performance of EchoFocus-Measure for 18 individual measurements during
internal and external testing is shown in Figure 2. Internally, MAE was: 0.09 cm (aortic valve
diameter), 0.13 cm (aortic root diameter), 2.8% (LVEF), 5.8 mL (LV end-diastolic volume), 0.05
cm (LV posterior wall thickness), 0.05 cm (septal wall thickness), 5.1 g (LV mass), 2.5 mL (2LV
end-systolic volume), 0.14 cm (mitral valve diameter), 0.17 cm (main pulmonary artery
diameter), 0.14 cm (pulmonary valve diameter), 0.18 cm (tricuspid valve diameter), 4.8 mL (left
atrial volume), 5.5 mL (right atrial volume), 2.6% (right ventricular longitudinal strain), 2.6%
(LV circumferential strain), 1.9% (LV longitudinal strain), and 3.2% (right ventricular free wall
strain). During external validation, there was variable increase in MAE among metrics; for
example, external LVEF MAE increased to 3.8%, LV end-diastolic volume MAE increased to
13.8 mL, and aortic root diameter MAE increased to 0.27 cm.

During benchmarking, EchoFocus-Measure outperformed PanEcho in predicting LVEF
in the overall internal (MAE 2.8% versus 7.3%) and external (MAE 3.8% versus 7.9%) cohorts
and in specific age and lesion subgroups (Table 3). EchoFocus-Measure performance remained

similar for ages >3, followed by a slight drop for ages 1-3 (internal MAE 3.0%, external MAE

14
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287  3.8%) and age <1 (internal MAE 3.2%, external MAE 4.4%). PanEcho performance started to
288  drop for ages <8 years old.

289 EchoFocus-Measure LVEF performance was relatively stable across all CHD lesions
290  (internal MAE <5% except hypoplastic left heart syndrome). Similar trends were noted

291  externally, with a maximal MAE of 5.8%. Interestingly, for L-loop transposition of the great
292  arteries, MAE was 4.0% internally for EchoFocus-Measure, compared to 13.1% for PanEcho.
293 Among non-critical CHD studies, EchoFocus-Measure exhibited a LVEF MAE of 3.0%
294  internally and 4.3% externally. LVEF MAE increased slightly for critical CHD (3.3% internal,
295  5.5% external) and decreased for patients without CHD (2.6% internal, 3.3% external). In the
296  cardiomyopathy subgroup, LVEF MAE was 3.2% internally and 5.1% externally. PanEcho
297  showed similar trends but with higher errors; for example, LVEF MAE for critical CHD was
298  8.7% both internally and externally. As illustrated in Figure S1, EchoFocus-Measure

299  outperformed PanEcho for six additional measurements: LV end-diastolic volume, LV end-
300  systolic volume, septal wall thickness, LV posterior wall thickness, left atrial volume, and aortic
301  root diameter.

302  Sonographer Adjudication

303  Discrepant internal test cases (>50" percentile MAE) for LVEF and aortic root diameter were
304 reviewed by four experienced blinded sonographers.

305 As shown in Figure 3A, for LVEF EchoFocus-Measure clustered with the original

306 measurement and sonographers 1, 2, 4, whereas sonographer 3 did not. When compared to
307 median sonographer LVEF measurements, the adjudicated EchoFocus-Measure MAE of 2.4%

308  was within the sonographer MAE of 3.7%. The inter-sonographer intraclass correlation
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coefficient was 0.47; when adding EchoFocus-Measure to the pool of sonographer
measurements, the intraclass correlation coefficient was unchanged (0.47).

As shown in Figure 3B, EchoFocus-Measure clustered alone when estimating aortic root
diameter. When compared to median sonographer aortic root diameter measurements, the
adjudicated EchoFocus-Measure MAE of 0.53 cm was outside the sonographer MAE of 0.05 cm.
The near perfect inter-sonographer intraclass correlation coefficient was 0.96; when adding
EchoFocus-Measure to the pool of measurements, the intraclass correlation coefficient dropped
to 0.91.

EchoFocus-Measure Qualitative Outcome Performance

EchoFocus-Measure performance to detect 10 qualitative outcomes is shown in Figure 3.
Internally, performance ranged from AUROC 0.88 (at least moderate RV hypertension, LV
hypertrophy, and RV outflow tract obstruction) to 0.95 (at least moderate aortic stenosis). During
external testing, there was a modest drop in performance, with AUROC ranging from 0.73
(pulmonary and tricuspid regurgitation) to 0.86 (aortic stenosis). Individual performance metrics
for internal and external testing are shown in Tables S1 and S2.

For two valvar measurements of interest (aortic and mitral regurgitation), subgroup
analysis was performed. As shown in Table S3, internal performance was highest for ages 3-18.
No clear trend was apparent for external studies.

Model Explainability

In model explainability analyses (Figure 5), EchoFocus-Measure assigned the highest attention
for LVEF assessment to the apical four-chamber, parasternal long-axis, and parasternal short-
axis views. For mitral regurgitation, the model similarly prioritized these same views, with Color

Doppler clips being preferentially selected in most cases.
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DISCUSSION

EchoFocus-Measure is the first study-level, multi-task Al echo platform designed for automated
evaluation of a broad set of common pediatric echo measurements, encompassing 18 quantitative
and 10 qualitative parameters. The method extends the PanEcho framework with a clinically
inspired study-level attention module that prioritizes diagnostically informative views in a
manner analogous to expert cardiac imagers. By leveraging the largest pediatric and CHD echo
dataset reported to date (>11 million videos), we address longstanding limitations related to
sample size and age- and lesion-level heterogeneity that have constrained pediatric Al-echo
development. We demonstrate that EchoFocus-Measure achieves expert-level performance for
key functional measurements (including LVEF) across age, CHD lesion, and cardiomyopathy
subgroups. Qualitative measurements showed strong internal performance with a modest decline
on external testing. Notably, external performance herein was comparable to the internally
reported performance of prior pediatric Al-echo studies focused on individual measurements,
including mitral regurgitation (AUROC 0.75-0.84)?* and LVEF (MAE 3.7%).!? Finally, model
explainability analyses suggest EchoFocus-Measure prioritizes clinically expected views for
LVEF and mitral regurgitation prediction, lending trust to clinicians. Collectively, these findings
suggest that EchoFocus-Measure is a step towards broadly delivering quality pediatric echo
assessments across diverse clinical settings, with the potential to expand access to care,
accelerate patient triage, standardize measurements, and streamline sonographer workflows.
Clinical Need for Automated Echo Measurements

Pediatric heart failure is an underrecognized and growing global health challenge.?*° In 2021,
an estimated 6 million children were affected worldwide, a number forecasted to sharply rise by

2050.33-33 These figures likely underestimate the true burden because pediatric heart failure is
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355  systematically underdiagnosed in LMICs.?* Furthermore, the leading causes of pediatric heart
356  failure’>—CHD (48%), cardiomyopathy (20%), and rheumatic heart disease (11%)—are also
357  major drivers of heart failure in adulthood; for example, the rapidly growing adult CHD

358  population is at nearly 10-fold greater risk of heart failure,*® which represents the leading cause
359  of mortality in this population.?” Rheumatic heart disease alone, which disproportionately affects
360  children and young adults in resource-limited settings, impacts an estimated 40 million

361 individuals globally and accounts for nearly 300,000 deaths annually.*8

362 Across these conditions, delayed recognition of ventricular dysfunction and valvular
363  disease leads to worse clinical trajectories for children and adults who might otherwise benefit
364  from early referral, timely intervention, and guideline-directed therapy. Scalable and accessible
365 technologies are urgently needed to facilitate earlier disease detection and enable clinically

366  actionable decision-making across diverse care environments. This need is particularly acute in
367  LMICs, where shortages of clinicians with specialized expertise in pediatric cardiology are

368  profound,’!%3? and where the burden of diseases such as rheumatic heart disease remains high.
369  Even in well-resourced healthcare systems, substantial inter-operator and inter-institutional
370  variability in echo measurements persists, underscoring the ongoing challenge and need for
371  achieving standardized, reproducible quantitative assessment.'>!?

372 Clinical Implications of EchoFocus-Measure

373 With this context, EchoFocus-Measure was developed to benefit both low-resource and high-
374  resource settings. In resource-limited settings, EchoFocus-Measure may support triage by

375  identifying patients with ventricular dysfunction or clinically significant left-sided valvar

376  disease, including patterns suggestive of rheumatic heart disease or congenital valvulopathies.

377  LVEF error in external cohorts (MAE 3.8%) was comparable to human variability (MAE 3.7%),
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378  supporting the use of automated LVEF assessment for identifying patients at risk of systolic

379  dysfunction. In addition, external left-sided valvar abnormality AUROCsSs of 0.80-0.86 and

380  external positive predictive values of approximately 25% for mitral regurgitation suggest that the
381  model can enrich for higher-risk patients who may benefit from earlier referral or further expert
382  evaluation (Table S2).

383 Even in well-resourced healthcare systems, automated echo measurements offer

384  important benefits. Substantial inter-operator and inter-institutional variability in measurements
385  can adversely affect consistency and quality of care.!>!* Moreover, routine quantitative

386  measurements consume significant clinician/sonographer time and could be reliably automated,
387  allowing expert effort to be redirected toward higher-value interpretive and clinical decision-
388  making tasks. EchoFocus-Measure achieves sonographer-level accuracy for LVEF measurement
389  and demonstrates stable performance across a broad range of ages and CHD lesion types,

390  supporting its use for automated measurements and quality assurance to streamline sonographer
391  workflow. In the adult echo literature, a comparable Al-based system has been shown to be non-
392  inferior to sonographers for LVEF assessment in a blinded, randomized trial, while also reducing
393 interpretation time for both sonographers and cardiologists.*® EchoFocus-Measure could fill a
394  similar role in pediatric practice, although prospective evaluation will be required to rigorously
395  assess its impact on workflow and clinical decision-making.

396

397  Importance of Real-World Deployment

398 A key finding of this study was the decline in model performance observed in a large,

399  geographically and demographically distinct external cohort, reflecting conditions expected

400  during deployment across diverse real-world care environments. This attenuation in performance
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is not unexpected given the greater clinical complexity, younger patient age distribution, and
substantial heterogeneity in echo acquisition and processing across institutions. Variability in
vendor-specific image pipelines, operator-dependent acquisition techniques, image quality, and
local imaging protocols introduces domain shifts that can meaningfully affect model
performance when models are applied beyond their development settings.

These results highlight the importance of diverse cohort training, rigorous external
validation, and ongoing performance monitoring as Al-based echo tools are deployed across
heterogeneous health systems globally. Strategies such as retraining with more diverse data,
domain-aware calibration, and continual evaluation across regions and care contexts will be
critical to ensure reliable performance as such tools are extended to settings with differing
resources, workflows, and patient populations.

Limitations and Future Directions

Several limitations warrant consideration. First, although model performance for LVEF was
within the range of human variability, accuracy for other quantitative measurements was more
variable, indicating opportunities for further improvement. Future work will focus on enhancing
performance and generalizability through multiple complementary strategies, including
exploration of other backbone architectures (such as EchoPrime)!® or learning approaches (e.g.,
adversarial learning*!), development of pediatric cardiology-specific foundation models to learn
more robust and anatomically informed representations, and incorporation of multi-institutional
or federated learning approaches to better capture heterogeneity across both large referral centers
and smaller care settings. Second, despite broad geographic diversity in the external validation
cohort, certain regions with substantial unmet clinical need—notably sub-Saharan Africa—were

not represented. As a result, generalizability to settings with the greatest burden of pediatric heart
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disease and the most constrained access to specialty care cannot be assumed and will require
targeted evaluation. Third, the current models rely on transthoracic echos acquired by trained
sonographers. Extension to low-resource or point-of-care ultrasound environments will
necessitate additional validation on portable imaging systems, where image quality and operator
variability may differ substantially. Finally, while post-hoc explainability analyses using
integrated gradients provided insight into model behavior, further work is needed to determine
how such explanations influence clinician trust, interpretability, and decision-making in real-
world settings.

Future directions should therefore prioritize continued model refinement with an
emphasis on robustness to heterogeneous acquisition conditions, prospective multi-site
evaluation across diverse healthcare environments, and formal assessment of clinical utility,

workflow integration, and impact on patient triage and outcomes.

Conclusions

EchoFocus-Measure demonstrates that large-scale, multi-task AI models can provide accurate,
automated echo measurements in pediatric populations using routine transthoracic echo. The
model outperformed the PanEcho benchmark and achieved external performance comparable to
internally reported results in the existing pediatric Al-echo literature for selected measurements.
At the same time, these findings underscore the critical importance of rigorous external
validation as such tools are extended across heterogeneous care environments. By transparently
characterizing both strengths and limitations, this work establishes a foundation for prospective
evaluation and iterative deployment strategies aimed at enabling equitable, scalable access to

high-quality pediatric cardiac care worldwide.
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606 TABLES

607 Table 1: Baseline Characteristics of Internal and External Cohorts
Internal Development Internal Test External
Patients 60,269 15,068 2,506
Sex (Male) 32,162 (53.36%) 8051 (53.43%) 1,391 (55.51%)

ASD 3,019 (5.01%) 789 (5.24%) 282 (11.25%)
Anomalous Coronaries 299 (0.50%) 72 (0.48%) 33 (1.32%)

Bicuspid Aortic Valve 1,213 (2.01%) 286 (1.90%) 123 (4.91%)
Double Aortic Arch 82 (0.14%) 17 (0.11%) 6 (0.24%)
DORV 156 (0.26%) 42 (0.28%) 79 (3.15%)
D-loop TGA 228 (0.38%) 69 (0.46%) 44 (1.76%)
Ebstein Anomaly 91 (0.15%) 17 (0.11%) 40 (1.60%)
HLHS 188 (0.31%) 48 (0.32%) 63 (2.51%)
IAA 36 (0.06%) 13 (0.09%) 8 (0.32%)
L-loop TGA 65 (0.11%) 15 (0.10%) 48 (1.92%)
PAPVC 262 (0.43%) 67 (0.44%) 24 (0.96%)

Patent Ductus Arteriosus 4,649 (7.71%) 1,110 (7.37%) 179 (7.14%)
Right Aortic Arch 464 (0.77%) 117 (0.78%) 38 (1.52%)
Tricuspid Atresia 69 (0.11%) 26 (0.17%) 11 (0.44%)
Truncus arteriosus 48 (0.08%) 13 (0.09%) 15 (0.60%)
Single Ventricle Disease 313 (0.52%) 87 (0.58%) 93 (3.71%)
Tetralogy of Fallot 505 (0.84%) 114 (0.76%) 56 (2.23%)

AVCD 414 (0.69%) 101 (0.67%) 146 (5.83%)

VSD 3,204 (5.32%) 767 (5.09%) 293 (11.69%)

Coarctation of the Aorta

830 (1.38%)

179 (1.19%)

82 (3.27%)

Pulmonary Atresia 255 (0.42%) 44 (0.29%) 56 (2.23%)
TAPVC 59 (0.10%) 25 (0.17%) 17 (0.68%)
Any Non-Critical CHD 10,346 (17.17%) 2,550 (16.92%) 826 (32.96%)
Any Critical CHD 2,547 (4.23%) 606 (4.02%) 543 (21.67%)
Any CHD 11,153 (18.51%) 2,741 (18.19%) 1,097 (43.77%)
Any Cardiomyopathy 1,059 (1.76%) 227 (1.51%) 39 (1.56%)
608 Data presented as median (interquartile range).
609 Abbreviations: atrial septal defect (ASD); double outlet right ventricle (DORV); transposition
610 of the great arteries (TGA); hypoplastic left heart syndrome (HLHS); interrupted aortic arch
611 (IAA); partial anomalous pulmonary venous connection (PAPVC); atrioventricular canal defect
612 (AVCD); ventricular septal defect (VSD); total anomalous pulmonary venous connection
613 (TAPVC).
614
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615 Table 2: Echo Characteristics of Internal and External Cohorts
Internal Development Internal Test External
Number of Echos 174,042 43,393 3,096
Videos 9,099,124 2,271,924 289,613
Videos Per Study 47 (36, 66) 47 (36, 66) 44 (29, 62)
Age at Echo 8.49 (1.13,16.57) 8.46 (1.18,16.46) 3.52(0.55,11.11)
Echos with >1 Measure 150,836 37,652 1,915

Aortic Valve Diameter (cm)
Aortic Root Diameter (cm)
LVEEF (%)

LVEDYV (mL)

LV Posterior Wall Thickness (cm)
Septal Wall Thickness (cm)
LV Mass (g)

LVESV (mL)

Mitral Valve Diameter (cm)
MPA Diameter (cm)
Pulmonary Valve Diameter (cm)
Tricuspid Valve Diameter
Left Atrial Volume (mL)
Right Atrial Volume (mL)
RV Longitudinal Strain (%)
LV Circumferential Strain (%)
LV Longitudinal Strain (%)
RV Free Wall Strain (%)
LVOTO
Aortic Regurgitation
Aortic Stenosis
Mitral Regurgitation
RV Hypertension
Tricuspid Regurgitation
LV Systolic Dysfunction
Pulmonary Regurgitation

1.66 (1.14,2.00)
2.37 (1.70,2.88)

61 (58,65)
73.20 (27.40,127.00)
0.66 (0.52,0.78)
0.69 (0.55,0.83)
59.40 (23.50,105.70)
27.40 (10.40,48.80)
2.09 (1.29,2.61)
1.85 (1.10,2.37)
1.67 (0.91,2.36)
2.20 (1.51,2.70)
37.60 (23.80,53.50)
27.90 (13.60,48.00)
-20.50 (-24.00,-16.50)
-28.90 (-32.10,-25.20)
-20.80 (-23.20,-18.10)
-22.50 (-27.50,-17.90)
1,666 (0.96%)
3,066 (1.76%)
1,707 (0.98%)
5,395 (3.10%)
17,195 (9.88%)
9,215 (5.29%)
7,491 (4.30%)
5,339 (3.07%)

1.66 (1.15,1.99)
2.38 (1.72,2.88)
61 (58,65)

75.30 (27.30,127.10)  61.45 (20.22,116.15)
0.66 (0.50,0.82)
0.71 (0.57,0.93)

49.40 (19.45,98.20)

22.80 (7.60,43.75)
1.77 (1.26,2.42)
1.50 (1.02,2.16)
1.22 (0.91,1.81)
2.00 (1.40,2.59)

28.90 (14.70,42.90)

24.60 (17.60,43.40)

0.66 (0.52,0.78)
0.69 (0.55,0.82)
60.90 (23.50,105.90)
28.10 (10.32,48.80)
2.10 (1.28,2.62)
1.87 (1.12,2.39)
1.63 (0.92,2.35)
2.20 (1.51,2.70)
37.80 (23.80,53.90)
29.90 (13.60,49.00)
-20.50 (-24.10,-16.70)
-29.00 (-32.30,-25.20)
-20.80 (-23.20,-18.10)
-22.80 (-27.60,-18.00)

1.35 (0.91,1.81)
2.00 (1.40,2.60)

62 (57,66)

337 (0.78%) 89 (2.87%)
816 (1.88%) 135 (4.36%)
306 (0.71%) 37 (1.20%)
1,368 (3.15%) 227 (7.33%)
4,300 (9.91%) 256 (8.27%)

2,129 (4.91%)
1,831 (4.22%)
1,382 (3.18%)

220 (7.11%)
58 (1.87%)
105 (3.39%)

LV Hypertrophy 2,614 (1.50%) 608 (1.40%) 62 (2.00%)
RVOTO 5,065 (2.91%) 1,242 (2.86%) 172 (5.56%)
616 Data presented as median (interquartile range).
617 Abbreviations: left ventricular end-diastolic volume (LVEDV); left ventricular end-systolic
618 volume (LVESV); main pulmonary artery (MPA); right ventricle (RV); LV outflow tract
619 obstruction (LVOTO); RV outflow tract obstruction (RVOTO).

620
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621 Table 3: Benchmarking EchoFocus-Measure to PanEcho
Internal External
EchoFocus- EchoFocus-
Measure PanEcho Measure PanEcho
Overall Cohort 2.77(1.32,4.80) 7.30 (4.04,10.97) 3.81(1.77,6.68) 7.86(3.95,12.34)
Age Subgroups (years)
<1 3.18 (1.50,5.60) 7.54 (4.08,11.52)  4.43(2.01,7.70)  8.20 (4.15,12.59)
1-3 2.96(1.35,5.06) 8.43(4.70,12.16)  3.81 (2.04,6.82)  9.16 (4.42,14.32)
3-8 2.60 (1.25,4.50) 8.08 (5.05,11.40)  3.96(2.08,6.34)  8.51 (4.63,12.66)
8-12 2.73(1.32,4.58) 7.35(4.13,10.99)  3.41(1.66,6.55) 7.67 (3.80,12.30)
12-18 2.57(1.23,436) 6.39(3.39,9.84)  3.29(1.52,5.19) 6.57 (2.89,11.01)
>18 2.75(1.33,4.76) 7.04 (3.77,10.63)  3.38(1.50,7.71)  5.61 (3.19,10.55)
Lesion Subgroups
AP window 2.55(0.77,4.93) 11.51(10.11,14.10) — —
ASD 3.14 (1.48,5.59) 8.18 (4.69,12.34)  4.62(2.07,6.78)  8.49 (5.39,12.94)
Anomalous Coronaries  2.75 (1.48,4.44) 6.30(2.97,10.02) — —
Bicuspid Aortic Valve ~ 3.04 (1.41,5.40) 8.13 (4.86,12.29)  5.23(2.38,7.73)  7.93 (3.36,12.96)
Cor Triatriatum 3.10(1.71,5.69) 11.73 (8.92,16.34) — —
Double Aortic Arch  1.78 (0.65,3.08)  7.98 (5.18,8.84) — —
DORV 4.17 (2.07,8.04)  9.00 (5.32,12.85) — —
D-loop TGA 2.36 (1.06,4.13)  9.06 (6.16,11.45) — —
Ebstein Anomaly 3.78 (1.63,6.92) 8.87 (3.54,11.66) — —
HLHS 5.76 (2.81,8.25) 12.98 (7.12,15.57) — —
Interrupted Aortic Arch  3.46 (1.32,5.63) 10.63 (6.41,14.32) — —
L-loop TGA 3.95(1.30,7.19) 13.12 (7.03,15.84) — —
PAPVC 3.00 (1.43,4.78)  9.56 (5.90,13.53) — —
PDA 3.13(1.49,5.63) 8.31(4.66,12.30)  5.29(2.52,8.42) 8.16 (4.88,13.39)
Right Aortic Arch ~ 3.04(1.52,5.26)  7.67 (4.60,11.52) — —
Tricuspid atresia 3.18(1.97,5.84)  6.74 (3.62,10.32) — —
Truncus Arteriosus 2.46 (1.58,4.51) 7.63(5.16,10.57) — —
Any SV Disease 4.84(2.50,8.07) 9.94 (5.55,14.89) — —
Tetralogy of Fallot  3.08 (1.50,5.35)  9.08 (5.68,12.92) — —
AVCD 3.42(1.656.21) 8.03(4.48,12.02) 4.77(1.93,8.77) 9.41 (6.41,15.60)
VSD 3.11(1.43,544) 7.89(4.48,11.61) 3.89(1.67,6.71)  7.93 (4.23,11.31)
Coarctation of the Aorta  3.48 (1.53,6.38) 8.70 (4.71,12.82)  5.77 (3.49,8.50)  8.06 (5.02,11.96)
Pulmonary Atresia 3.26 (1.50,6.35) 8.34(5.21,12.41) — —
TAPVC 3.20(1.83,4.21)  5.16(1.02,9.00) — —
Critical Aortic Stenosis ~ 3.33 (2.02,6.80) 12.23 (8.03,15.04) — —
Critical Pulmonary Stenosis 2.24 (1.33,6.52)  5.63 (3.29,9.34) — —
Any Non-Critical CHD ~ 2.98 (1.42,5.32)  8.02 (4.60,11.90)  4.29(1.99,7.27)  7.76 (4.36,12.07)
Any Critical CHD 332 (1.55,6.08) 8.72(5.14,12.76)  5.48 (2.46,8.87)  8.69 (4.83,13.26)
Any CHD 2.98(1.41,531) 8.07 (4.66,11.93)  4.36(1.96,7.35)  7.89 (4.38,12.30)
No CHD 2.60(1.25,4.39) 6.73(3.63,10.05)  3.33(1.59,6.10) 7.81(3.43,12.18)
Any Cardiomyopathy  3.23 (1.62,5.64) 8.28(4.35,12.83)  5.07 (2.00,8.09) 10.51 (4.72,15.75)
622 Abbreviations: aortopulmonary (AP); atrial septal defect (ASD); double outlet right ventricle
623 (DORV); transposition of the great arteries (TGA); hypoplastic left heart syndrome (HLHS);
624 partial anomalous pulmonary venous connection (PAPVC); patent ductus arteriosus (PDA);
625 single ventricle (SV); atrioventricular canal defect (AVCD); ventricular septal defect (VSD);
626 total anomalous pulmonary venous connection (TAPVC); congenital heart disease (CHD).
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627 FIGURES
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630 Figure 1: Study Design and Model Architecture. (A) Study design schematic with STROBE
631 diagram showing initial patient selection and filtering to form the main cohort. Pins of origin
632  countries for external patients inset. (B) EchoFocus-Measure architecture schematic and outcome
633 targets.
634 Abbreviations: transthoracic echo (TTE).
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636 Figure 2: EchoFocus-Measure Regression Task Performance. Internal (blue) and external
637 (orange) performance of EchoFocus-Measure to predict 18 measurements in the pediatric and
638 CHD population. MAE values inset. Dotted line represents the identity line.

639 Abbreviations: left ventricular ejection fraction (LVEF); LV end-diastolic volume (LVEDV);
640 LV end-systolic volume (LVESV); main pulmonary artery (MPA); left atrium (LA); right atrium
641 (RA); right ventricle (RV).
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Figure 3. Sonographer Adjudication of Discrepant Cases. Expert adjudication was performed
on 50 discrepant (A) LVEF cases and (B) 50 discrepant aortic root diameter cases. Heatmap with
hierarchical clustering displaying measurements of individual sonographers versus EchoFocus-
Measure versus the original measurement.
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649 Figure 4: EchoFocus-Measure Performance for Qualitative Outcomes. Performance of the
650 qualitative EchoFocus-Measure model to predict 10 qualitative measures during internal (blue)
651  and external (orange) testing. Dotted line represents chance. 95% confidence intervals are shown
652 using bootstrapping.
653 Abbreviations: Left ventricular outflow tract obstruction (LVOTO); right ventricle (RV); RV
654 outflow tract obstruction (RVOTO).
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656 Figure 5: Model Explainability Analysis. Radar plots of top views selected during
657 explainability analysis for (A) LVEF and (B) mitral regurgitation.
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